簡易檢索 / 詳目顯示

研究生: 郭彥廷
Kuo, Yen-Ting
論文名稱: 具應力梯度接觸蝕刻停止層與源、汲極晶格不匹配對N型奈米元件的影響
Interaction Influence of S/D Lattice Mismatch and Stress Gradient of CESL on Nano-Scaled Strained NMOSFETs
指導教授: 劉傳璽
Liu, Chuan-Hsi
李昌駿
Lee, Chang-Chun
學位類別: 碩士
Master
系所名稱: 機電工程學系
Department of Mechatronic Engineering
論文出版年: 2016
畢業學年度: 104
語文別: 中文
論文頁數: 89
中文關鍵詞: 接觸蝕刻停止層有限元素分析多重應力源結構矽碳源/汲極鍺矽源/汲極
英文關鍵詞: SiC S/D
DOI URL: https://doi.org/10.6345/NTNU202204378
論文種類: 學術論文
相關次數: 點閱:244下載:15
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本研究旨在分析具多重應力源結構之N型奈米電晶體,其元件結構尺寸對於元件應力分佈之性能及表現。該電晶體結構之多重應力源包括:1、晶格不匹配之源/汲極區域,以及2、在厚度方向上具應力梯度之接觸蝕刻停止層(CESL)。藉由本研究所提出之創新模擬法所得之分析結果證實,由具應力梯度之CESL結合矽碳源/汲極晶格不匹配引致應力源之先進應變工程技術,能夠精準預測真實電晶體通道區域之應力與應變分佈情形。為了探討CESL薄膜應力梯度對本研究之影響,本研究施予1.0 GPa拉伸內應力,在模擬分析時固定其厚度,並分別以多次沈積方式諸如1、2、4、8與12次,以逐層堆疊的方式進行數值收斂性分析;結果得知沈積次數愈多者將愈接近實際元件之應力分佈,且元件通道應力分佈將收斂於一定值。採用上述模擬方式對具 1.0 GPa t-CESL及源/汲極區域鑲埋1.65 %碳莫耳分率之矽碳合金之多重應力源結構,進行電晶體通道寬度調變模擬分析,其結果指出,多重應力源結構改善電晶體之效能將優於單一應力源結構,而隨著通道寬度越寬,通道應力趨於飽和,並且經由一階壓阻係數關係式,得知電晶體性能提升比例。
      此外,考慮多重應力源結構對於鍺基板電晶體的性能表現,並藉由本論文使用之創新模擬方法,將具應力梯度之t-CESL結合鍺矽源/汲極晶格不匹配引致應力之多重應力源結構進行模擬分析。結果指出,越高的矽莫耳分率之鍺矽合金,對通道應力影響越大,並且隨著通道寬度的延伸,應力趨於飽和,最後由一階壓阻係數關係式,獲得鍺基板電晶體性能提升比例。

    Advanced strained engineering techniques, including embedding stressors from lattice mismatch in source and drain (S/D) regions and the contact etch stop layer (CESL), have been widely adopted in nano-scale transistors to enhance the device performances. In order to accurately estimate the stress impact from CESL, the influence of stress gradient along the film thickness direction of CESL induced from the process of film deposition needs to be taken into account. For this reason, an innovative simulation methodology for simulating the stress gradient behavior of CESL is proposed in this research. A validated vehicle of n-type MOSFET combined S/D SiC stressors with a 1.65% mole fraction of carbon and tensile CESL is used to analyze the stress contour distribution and performance of the foregoing device while the present estimated approach is performed. To create the stress gradient behavior of a CESL film in stress simulation of devices, a whole fixed CESL thickness is divided into several sub-layers and react each sub-layer from the bottom to the top step by step in the analysis. It should be noted that a tensile 1.0 GPa of CESL is utilized in the finite element analysis of stress simulation. According to the analytic results of a fixed CESL thickness divided by 1, 2, 4, 8, and 12 layers, a numerical convergence in stress magnitude of device channel is obtained. In order to observe the stress distribution of device in three-dimensional field, the research executes a parameter analysis in the channel width. The result shows that a wider channel results in a more obvious bending moment effect. It leads to an increased channel stress and hence an improved device. It is found that the channel stress would be saturated when the channel width is wider than 1µm. After extracting stress components of device channel, carrier mobility gain can be estimated via a first-order stress-piezoresistivity model.

    第一章 緒論 1 1.1 前言 1 1.2 研究動機與方向 1 1.3 本論文研究架構 2 第二章 文獻探討 3 2.1 金氧半場效電晶體 3 2.1.1 摩爾定律 3 2.1.2 電晶體結構 5 2.1.3 電晶體性能 7 2.1.4 載子遷移率 8 2.2 電晶體之電流-電壓特性 9 2.2.1 輸出特性ID-VD曲線 9 2.2.2 轉移特性ID-VG曲線 12 2.2.3 次臨界特性 15 2.3 應變工程技術 17 2.3.1 應變矽物理機制 18 2.3.2 全區域應變技術 21 2.3.3 局部區域應變技術 24 2.3.4 壓阻效應 36 2.4 電晶體多層CESL與SiC源、汲極結構 38 2.4.1 電晶體矽碳源、汲極結構 38 2.4.2 電晶體多層CESL結構 42 第三章 實驗與研究方法 45 3.1 有限元素分析概念 45 3.1.1 ANSYS有限元素分析 46 3.1.2 平面應力與平面應變 48 3.2 研究分析流程 51 3.2.1 實驗步驟與方法 51 3.2.2 材料特性參數與邊界條件 58 3.2.3 Multi layers CESL結構之參數設定方法與驗證 61 3.2.4 矽碳合金之參數設定方法與驗證 62 第四章 結果與討論 64 4.1 具應力梯度行為t-CESL對N型奈米元件應力影響研究 64 4.1.1 具應力梯度行為t-CESL結構之薄膜沉積次數模擬研究 64 4.1.2 具應力梯度行為t-CESL結構之通道寬度調變模擬研究 67 4.2 具應力梯度行為t-CESL與矽碳合金源、汲極晶格不匹配效應對N型奈米元件之交互影響研究 69 4.2.1 具應力梯度t-CESL結合碳合金源、汲極之通道寬度調變應力模擬 69 4.2.2 具應力梯度t-CESL結合矽碳合金源、汲極對載子遷移率之改善 71 4.3 具應力梯度行為t-CESL與鍺矽合金源、汲極晶格不匹配效應對N型奈米元件之交互影響研究 72 4.3.1 具應力梯度t-CESL與不同矽莫耳分率之鍺矽合金應力模擬結果 72 4.3.2 具應力梯度t-CESL結合鍺矽合金源、汲極之通道寬度調變應力模擬 75 4.3.3 具應力梯度t-CESL結合鍺矽合金源、汲極對載子遷移率之改善 78 第五章 結論與未來展望 80 5.1 矽基板電晶體使用應變工程技術之結果 80 5.2 鍺基板電晶體使用應變工程技術之結果 82 5.3 未來展望 83 參考文獻 84

    [1] C. A. Mack, “Fifty years of moore’s law”, IEEE Transactions on Semiconductor Manufacturing, Vol. 24, No. 2, pp. 202-207, 2011.
    [2] 工研院產業經濟與趨勢研究中心及資策會資訊市場情報中心,2015年台灣重要產業技術發展藍圖I,工研院IEK,2008。
    [3] 劉傳璽,陳進來,第三版,半導體物理元件與製程-理論與實務,五南文化出版社,2006。
    [4] C. Mahata, M. K. Bera, P. K. Bose, and C. K. maiti, “Charge Trapping Characteristics in High-K Gate Dielectrics on Germanium”, Thin Solid Films, Vol. 571, No. 1, pp. 163-166, 2008.
    [5] 鄭晃忠,劉傳璽,新世代積體電路製程技術,東華書局,2011。
    [6] M. Ono, M. Saito, T. Yoshitomi, C. Fiegna, T. Ohguro, and H. Iwai, “A 40 nm Gate Length n-MOSFET”, IEEE Transactions on Electron Devices, Vol. 42, No. 10, pp. 1822-1830, 1995.
    [7] S. D. Suk, S. Y. Lee, S. M. Kim, E. J. Yoon, M. S. Kim, M. Li, C. W. Oh, K. H. Yeo, S. H. Kim, D. S. Shin, K. H. Lee, H. S. Park, J. N. Han, C. J. Park, J. B. Park, D. W. Kim, D. Park, and B. I. Ryu, “High Performance 5nm radius Twin Silicon Nanowire MOSFET (TSNWFET): Fabrication on Bulk Si Wafer, Characteristics, and Reliability”, Electron Devices Meeting, IEDM Technical Digest. IEEE International, pp. 717-720, 2005.
    [8] T. Ghani, M. Armstrong, C. Auth, M. Bost, P. Charvat, G. Glass, T. Hoffmann, K. Johnson, C. Kenyon, J. Klaus, B. McIntyre, K. Mistry, A. Murthy, J. Sandford, M. Silberstein, S. Sivakumar, P. Smith, K. Zawadzki, S. Thompson, and M. Bohr, “A 90nm High Volume Manufacturing Logic Technology Featuring Novel 45nm Gate Length Strained Silicon CMOS Transistors”, Electron Devices Meeting, IEDM '03 Technical Digest. IEEE International, pp.11.6.1-11.6.3, 2003.
    [9] K. Rim, J. Welser, J. L. Hoyt, and J. F. Gibbons, “Enhanced Hole Mobilities in Surface-channel Strained-Si p-MOSFETs”, Electron Devices Meeting, IEDM '95. International, pp. 517-520, 1995.
    [10] V. Sverdlov, “Strain-Induced Effects in Advanced MOSFETs”, Springer Verlag, 2010.
    [11] S. Monfray, T. Skotnicki, P. Coronel, S. Harrison, D. Chanemougame, F. Payet, D. Dutartre, A. Talbot, and S. Borel, “Applications of SiGe Material for CMOS and Related Processing”, Bipolar/BiCMOS Circuits and Technology Meeting, pp. 1-7, 2006.
    [12] C. M. Lai, Y. K. Fang, C. T. Lin, and W. K. Yeh, “The Geometry Effect of Contact Etch Stop Layer Impact on Device Performance and Reliability for 90-nm SOI nMOSFETs”, IEEE Transactions on Electron Devices, Vol. 53, No. 11, pp. 2779-2785, 2006.
    [13] Y. T. Huang, S. L. Wu, S. J. Chang, C. W. Kuo, Y. T. Chen, Y. C. Cheng, and O. Cheng, “Origin of Stress Memorization Mechanism in Strained-Si nMOSFETs Using a Low-Cost Stress-Memorization Technique”, IEEE Transactions on Nanotechnology, Vol. 10, No. 5, pp. 1053-1058, 2011.
    [14] Y. C. Yeo, “Enhancing CMOS Transistor Performance using Lattice-Mismatched Materials in Source/Drain Regions”, International SiGe Technology and Device Meeting, pp. 1-2, 2006.
    [15] A. B. Kahng, P. Sharma, R. O. Topaloglu, “Exploiting STI Stress for Performance”, IEEE/ACM International Conference on Computer-Aided Design, pp. 83-90, 2007.
    [16] X. Huang, W. C. Lee, C. Kuo, D. Hisamoto, L. Chang, J. Kedzierski, E. Anderson, H. Takeuchi, Y. C. Choi, K. Asano, V. Subramanian, T. J. King, J. Bokor, and C. Hu, “Sub 50-nm FinFET: PMOS”, Electron Devices Meeting, IEDM '99. Technical Digest. International, pp. 67-70, 1999.
    [17] R. Loo, J. Sun, L. Witters, A. Hikavyy, B. Vincent, Y. Shimura, P. Favia, O. Richard, H. Bender, W. Vandervorst, N. Collaert, and A. Thean, “Strained Ge FinFET Structures Fabricated by Selective Epitaxial Growth”, Silicon-Germanium Technology and Device Meeting (ISTDM), 7th International, pp. 19-20, 2014.
    [18] 林宏年、呂嘉裕、林鴻志、黃調元,“局部與全面形變矽通道(Strained Si channel)互補式金氧半(CMOS)之材料、製程與元件特性分析(I)(II)”,奈米通訊,第十二卷第一、二期,pp. 44-49,2005 年。
    [19] S. Takagi, J. L. Hoyt, J. J. Welser, and J. F. Gibbons, “Comparative Study of Phonon-Limited Mobility of Two-Dimensional Electrons in Strained and Unstrained Si Metal-Oxide–Semiconductor Field-Effect Transistors”, Journal of Applied Physics, Vol. 80, No. 3, pp. 1567-1577, 1996.
    [20] K. Rim, R. Anderson, D. Boyd, F. Cardone, K. Chan, H. Chen, S. Christansen, J. Chu, K. Jenkins, T. Kanarsky, S. Koester, B. H. Lee, K. Lee, V. Mazzeo, A. Mocuta, D. Mocuta, P. M. Mooney, P. Oldiges, J. Ott, P. Ronsheim, R. Roy, A. Steegen, M. Yang, H. Zhu, M. Ieong, and H. S. P. Wong, “Strained Si CMOS (SS CMOS) Technology: Opportunities and Challenges”, Solid-State Electron, Vol. 47, No. 7, pp. 1133-1139, 2003.
    [21] K. N. Chiang, C. H. Chang, and C. T. Peng, “Local-strain Effects in Si/SiGe/Si Islands on Oxide”, Applied Physics Letters, Vol. 87, No. 19, pp. 191901-1 - 91901-3, 2005.
    [22] T. Tezuka, S. Nakaharai, Y. Moriyama, N. Sugiyama, and S. I. Takagi, “High-Mobility Strained SiGe-on-Insulator pMOSFETs With Ge-Rich Surface Channels Fabricated by Local Condensation Technique”, IEEE Electron Device Letters, Vol. 26, No. 4, pp. 243-245, 2005.
    [23] T. Mizuno, N. Sugiyama, T. Tezuka, Y. Moriyama, S. Nakaharai, and S. I. Takagi, “(110)-surface strained-SOI CMOS devices”, IEEE Electron Transactions on Electron Devices, Vol. 52, No. 3, pp. 367-374, 2005.
    [24] M. T. Currie, T. A. Langdo, G. Taraschi, E. A. Fitzgerald, and D. A. Antoniadis, “Carrier Mobilities and Process Stability of Strained Si n- and p-MOSFETs on SiGe Virtual Substrates”, Journal of Vacuum Science & Technology B: Microelectronics and Nanometer Structures, Vol. 19, No. 6, pp. 2268-2279, 2001.
    [25] S. E. Thompson, M. Armstrong, C. Auth, M. Alavi, M. Buehler, R. Chau, S. Cea, T. Ghani, G. Glass, T. Hoffman, C. H. Jan, C. Kenyon, J. Klaus, K. Kuhn, Z. Ma, B. Mcintyre, K. Mistry, A. Murthy, B. Obradovic, R. Nagisetty, P. Nguyen, S. Sivakumar, R. Shaheed, L. Shifren, B. Tufts, S. Tyagi, M. Bohr, and Y. El-Mansy, “A 90-nm Logic Technology Featuring Strained-Silicon”, IEEE Transactions on Electron Device, Vol. 51, No. 11, pp. 1790-1797, 2004.
    [26] C. W. Liu, S. Maikop, and C. Y. Yu, “Mobility-Enhancement Technologies”, Circuits and Devices Magazine, IEEE, Vol. 21, No. 3, pp. 21-36, 2005.
    [27] S. Ito, H. Namba, T. Hirata, K. Ando, S. Koyama, N. Ikezawa, T. Suzuki, T. Saitoh, and T. Horiuchi, “Effect of Mechanical Stress Induced by Etch-stop Nitride: Impact on Deep-submicron Transistor Performance”, Microelectronics Reliability, Vol. 42, No. 2, pp. 201-209, 2002.
    [28] S. Orain, V. Fiori, D. Villanueva, A. Dray, and C. Ortolland, “Method for Managing the Stress Due to the Strained Nitride Capping Layer in MOS Transistors”, IEEE Transactions on Electron Device, Vol. 54, No. 4, pp. 814-821, 2005.
    [29] G. Eneman, P. Verheyen, A. D. Keersgieter, M. Jurczak, and K. D. Meyer, “Scalability of Stress Induced by Contact-Etch-Stop Layers: A Simulation Study”, IEEE Transactions on Electron Devices, Vol. 54, No. 6, pp. 1446-1453, 2007.
    [30] K. J. Chui, K. W. Ang, N. Balasubramanian, M. F. Li, G. S. Samudra, and Y. C. Yeo, “n-MOSFET With Silicon–Carbon Source/Drain for Enhancement of Carrier Transport”, IEEE Transactions on Electron Devices, Vol. 54, No. 2, pp.249-256, 2007.
    [31] C. S. Smith, “Piezoresistance Effect in Germanium and Silicon”, Physical review, Vol. 94, No. 1, pp. 42-49, 1954.
    [32] F. M. Bufler, A. Erlebach, and M. Oulmane, “Hole Mobility Model With Silicon Inversion Layer Symmetry and Stress-Dependent Piezoconductance Coefficients”, IEEE Electron Device Letters, Vol. 30, No. 9, pp. 996-998, 2009.
    [33] C. F. Lee, R. Y. He, K. T. Chen, S. Y. Cheng, and S. T. Chang, “Strain Engineering for Electron Mobility Enhancement of Strained Ge NMOSFET with SiGe Alloy Source/Drain Stressors”, Microelectronic Engineering, No. 138, pp. 12-16, 2015.
    [34] C. C. Lee, S. T. Chang, S.W. Cheng, and B. T. Chian, “Performance Investigation of Nanoscale Strained Ge pMOSFETs with a GeSn Alloy Stressor”, Journal of Nanoscience and Nanotechnology, Vol. 15, No. 11, pp. 9158-9162, 2015.
    [35] Y. Liu, O. Gluschenkov, J. Li, A. Madan, A. Ozcan, B. Kim, Tom. Dyer, A. Chakravarti, K. Chan, C. Lavoie, I. Popova, T. Pinto, N. Rovedo, Z. Luo, R. Loesing, W. Henson, and K. Rim, “Strained Si Channel MOSFETs with Embedded Silicon Carbon Formed by Solid Phase Epitaxy”, IEEE Symposium on VLSI Technology, pp. 44-45, 2007.
    [36] K. V. Loiko, V. Adams, D. Tekleab, B. Winstead, X. Z. Bo, P. Grudowski, S. Goktepeli, S. Filipiak, B. Goolsby, V. Kolagunta, and M. C. Foisy, “Multi-Layer Model for Stressor Film Deposition”, International Conference on Simulation of Semiconductor Processes and Devices, pp. 123-126, 2006.
    [37] 劉晉奇,褚晴暉,有限元素分析與ANSYS的工程應用,滄海書局,2006。
    [38] 陳精一,ANSYS 7.0電腦輔助工程實務分析,全華圖書,2008。
    [39] S. Moaveni, “Finite Element Analysis: Theory and Application with Ansys-3rd Edition”, Prentice Hall, 2007.
    [40] G. Eneman, E. Simoen, P. Verheyen, and K. D. Meyer, “Gate Influence on the Layout Sensitivity of Si1-xGex S/D and Si1-yCy S/D Transistors Including an Analytical Model”, IEEE Transactions on Electron Device, Vol. 55, No. 10, pp. 2703–2711, 2008.

    下載圖示
    QR CODE