簡易檢索 / 詳目顯示

研究生: 王亮博
Wang, Liang-Bo
論文名稱: 探討小分子C-2對Protein-X促進amyloid beta寡聚合及細胞毒性之研究
Investigation of a small molecule, C-2, for its anti- Protein-X inducing amyloid beta oligomerization and cytotoxicity
指導教授: 林榮耀
Lin, Jung-Yaw
賴韻如
Lai, Yun-Ju
學位類別: 碩士
Master
系所名稱: 生命科學系
Department of Life Science
論文出版年: 2020
畢業學年度: 109
語文別: 英文
論文頁數: 39
中文關鍵詞: 阿茲海默氏症X蛋白類澱粉蛋白-β肽
英文關鍵詞: Alzheimer’s disease (AD), Protein-X, β-amyloid (Aβ)
DOI URL: http://doi.org/10.6345/NTNU202001707
論文種類: 學術論文
相關次數: 點閱:119下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 阿茲海默氏症(Alzheimer’s disease, AD)已被視為常見的神經退化性疾病,主要病因為海馬迴的神經元受損,同時也引起認知功能障礙的出現。AD特徵包括由細胞內蛋白tau過度磷酸化所造成的神經纖維糾結(neurofibrillary tangles, NFTs)及細胞外類澱粉蛋白-β肽(β-amyloid peptide, Aβ)聚集形成的類澱粉斑塊(plaques)。目前,我們實驗室已發現,與年幼的小鼠相比,年老的AD模式鼠具有較高表現量的X蛋白。為了更進一步了解X蛋白在AD中的作用機制,我們藉由轉殖入X蛋白的SH-SY5Y細胞株作為本實驗使用的模式細胞。在細胞存活率方面以及西方墨點法的實驗中,從寡聚合物Aβ42中處理的細胞組別可以得知,經X蛋白的給予後會產生更多Aβ的聚集,使得細胞存活率降低,而處理小分子藥物的C-2能有效降低X蛋白所給予出的Aβ,進而達到拯救細胞的效果。因此,我們認為C-2可能透過抑制X蛋白而有效治療AD的小分子藥物。

    Alzheimer’s disease (AD) has been considered as a common neurodegenerative disorder that causes hippocampal neurons damages and cognitive dysfunctions. AD features include neurofibrillary tangles (NFTs) caused by hyper-phosphorylation of intracellular tau protein, and extracellular β-amyloid (Aβ) plaques by Aβ aggregation. Our laboratory recently found that Protein-X level and the oligomerization of Aβ were concomitantly increased in aged triple transgenic AD mice (3xTg-AD) [PS1M146V, APPK670M/N671L, and tauP301L]. To further understand the mechanism of Protein-X in AD pathway, we established Protein-X stable-transfected SH-SY5Y cell line as the cell model in this experiment. In cell-based system and western blot analysis, Protein-X enhanced the formation of Aβ aggregation and the cytotoxicity is more than that in the present of Protein-X, implying that this cell-based system could serve as a platform for drug screening. Furthermore, we found that the small molecule, C-2, had the ability decrease the Aβ42 cytotoxicity induced by Protein-X. C-2 could be anticipated to develop a promising therapeutic agent for AD.

    Introduction 1 1. Alzheimer’s disease 1 2. β-amyloid (Aβ) formation 2 3. The relationship between Aβ and neuronal death 2 4. AD animal model, triple transgenic mice, (3xTg-AD) 3 5. Research aims 3 Materials and Methods 4 1. Materials 4 2. Cell culture 5 3. Cell viability assay 5 3.1 Preparation of Aβ42 for Cell viability assay 6 4. Western blotting 6 4.1 Preparation of cell lysates 6 4.2 Quantification of protein concentration 6 5. Detemination of Aβ42 oligomerization in the cell-free system by Western blot analysis 7 5.1 Preparation of the cell-free protein sample 7 5.2 Aβ42 oligomerization in the cell-free system by Western blot analysis 7 6. Animals 8 6.1 Morris water maze test 8 6.2 Y maze task 8 6.3 Novel object recognition experiment 9 6.4 Statistical analysis 9 Results 10 1. Protein-X enhanced the formation of Aβ42 aggregation with senescence in the brain of 3xTg-AD mice 10 2. Effects of the small molecule, C-2 on Aβ42 cytotoxicity that enhanced by Protein-X 10 3. C-2 reduced Aβ42 oligomerization induced by Protein-X in the cell-free system 11 4. Treatment with the small molecule, C-2, downregulated cell apoptosis markers induced by Aβ42 12 5. Treatment with the small molecule, C-2, downregulated tau hyper-phosphorylation markers induced by Aβ42 12 6. C-2 upregulated tau hyper-phosphorylation regulator, GSK-3β 13 7. C-2 improves the learning and memory deficits of 3xTg-AD mice 13 8. C-2 treatment ameliorates the behavior on the novel object recognition task in 3xTg-AD mice 14 9. C-2 treatment significantly reduced memory behaviors in the Y maze task 14 Discussion 15 References 18 Figures 22

    Ferri CP, Prince M, Brayne C, Brodaty H, Fratiglioni L, Ganguli M, Hall K, Hasegawa K, Hendrie H, Huang Y, Jorm A, Mathers C, Menezes PR, Rimmer E, Scazufca M. Alzheimer's Disease International. Global prevalence of dementia: a Delphi consensus study. Lancet. 2005; 366: 2112-7.
    WHO (World Health Organization) http://www.who.int/en/
    Thies W, Bleiler L. Alzheimer's disease facts and figures. Alzheimers Dement. 2013; 9: 208–45.
    Luchsinger JA, Noble JM, Scarmeas N. Diet and Alzheimer’s disease. Curr Neurol Neurosci Rep. 2007; 7: 366-72.
    Pohanka M. Cholinesterases, a target of pharmacology and toxicology. Biomed Pap Med Fac Univ Palacky Olomouc Czech Repub. 2011; 155: 219-29.
    McShane R, Areosa Sastre A, Minakaran N. Memantine for dementia. Cochrane Database Syst Rev. 2006; CD003154.
    Birks J, Harvey RJ. Donepezil for dementia due to Alzheimer's disease. Cochrane Database Syst Rev. 2006; CD001190.
    Weiner MW, Veitch DP, Aisen PS, Beckett LA, Cairns NJ, Green RC, Harvey D, Jack CR, Jagust W, Liu E, Morris JC, Petersen RC, Saykin AJ, Schmidt ME, Shaw L, Shen L, Siuciak JA, Soares H, Toga AW, Trojanowski JQ. The Alzheimer's Disease Neuroimaging Initiative: a review of papers published since its inception. Alzheimers Dement. 2013; 9: 111-94.
    Zhang C, Saunders AJ. Therapeutic targeting of the alpha-secretase pathway to treat Alzheimer's disease. Discov Med. 2007; 7: 113-7.
    Zhao LN, Long H, Mu Y, Chew LY. The toxicity of amyloid β oligomers. Int J Mol Sci. 2012; 13: 7303-27.
    Kirkitadze MD, Bitan G, Teplow DB. Paradigm shifts in Alzheimer's disease and other neurodegenerative disorders: the emerging role of oligomeric assemblies. J Neurosci Res. 2002; 69: 567-77.
    Bucciantini M, Giannoni E, Chiti F, Baroni F, Formigli L, Zurdo J, Taddei N, Ramponi G, Dobson CM, Stefani M. Inherent toxicity of aggregates implies a common mechanism for protein misfolding diseases. Nature. 2002; 416: 507-11.
    Hefti F, Goure WF, Jerecic J, Iverson KS, Walicke PA, Krafft GA. The case for soluble Aβ oligomers as a drug target in Alzheimer's disease. Trends Pharmacol Sci. 2013; 34: 261-6.
    Sadigh-Eteghad S, Sabermarouf B, Majdi A, Talebi M, Farhoudi M, Mahmoudi J. Amyloid-beta: a crucial factor in Alzheimer's disease. Med Princ Pract. 2015; 24: 1-10.
    Esposito Z, Belli L, Toniolo S, Sancesario G, Bianconi C, Martorana A. Amyloid β, glutamate, excitotoxicity in Alzheimer's disease: are we on the right track? CNS Neurosci Ther. 2013; 19: 549-55.
    Oddo, S., Caccamo, A., Shepherd, J. D., Murphy, M. P., Golde, T. E., Kayed, R., Metherate, R., Mattson, M. P., Akbari, Y. and LaFerla, F. M. Triple-transgenic model of alzheimer’s disease with plaques and tangles: Intracellular abeta and synaptic dysfunction. Neuron. 2003; 39; 409-421.
    Stockert, JC, Blazquez-Castro A, Canete M, Horobin RW, Villanueva A. MTT assay for cell viability: Intracellular localization of the formazan product is in lipid droplets. Acta histochemical. 2012; 114: 785-96.
    Marks DC, Belov L, Davey MW, Davey RA, Kidman AD. The MTT cell viability assay for cytotoxicity testing in multidrug-resistant human leukemic cells. Leuk Res Rep. 1992; 16: 1165-73.
    Necula, M., Kayed, R., Milton, S. & Glabe, C. G. Small molecule inhibitors of aggregation indicate that amyloid beta oligomerization and fibrillization pathways are independent and distinct. J Biol Chem. 2007; 282: 10311-24.
    Oddo S, Caccamo A, Kitazawa M, Tseng BP, LaFerla FM. Amyloid deposition precedes tangle formation in a triple transgenic model of Alzheimer’s disease. Neurobiol Aging. 2003; 24: 1063-70.
    Oddo S, Caccamo A, Tran L, Lambert MP, Glabe CG, Klein WL, LaFerla F M. Temporal profile of amyloid-beta (Abeta) oligomerization in an in vivo model of Alzheimer’s disease. A link between Abeta and tau pathology. J Biol Chem. 2006; 281: 1599-604.
    Hardy, J. A., and Higgins, G. A. Alzheimer’s disease: the amyloid cascade hypothesis. Science. 1992; 256; 184-185.
    Faucher, P., Mons, N., Micheau, J., Louis, C., and Beracochea, D. J. Hippocampal injections of oligomeric amyloid beta-peptide (1-42) induce selective working memory deficits and long-lasting alterations of ERK signaling pathway. Front Aging Neurosci. 2015; 7; 245.
    Lambert, M. P., Barlow, A. K., Chromy, B. A., Edwards, C., Freed, R., Liosatos, M., Morgan, T. E., Rozovsky, I., Trommer, B., Viola, K. L., Wals, P., Zhang, C., Finch, C. E., Krafft, G. A., and Klein, W. L. Diffusible, nonfibrillar ligands derived from Abeta 1-42 are potent central nervous system neurotoxins. Proc Natl Acad Sci U S A. 1998; 95; 6448-6453.
    Rowan, M. J., Klyubin, I., Wang, Q., Hu, N. W., and Anwyl, R. Synaptic memory mechanisms: Alzheimer’s disease amyloid beta-peptide-induced dysfunction. Biochem Soc Trans. 2007; 35; 1219-1223.
    Walsh, D. M., Klyubin, I., Shankar, G. M., Townsend, M., Fadeeva, J. V., Betts, V., Podlisny, M. B., Cleary, J. P., Ashe, K. H., Rowan, M. J., and Selkoe, D. J. The role of cell-derived oligomers of Abeta in Alzheimer’s disease and avenues for therapeutic intervention. Biochem Soc Trans. 2005; 33; 1087-1090.
    Ostapchenko, V. G., Chen, M., Guzman, M. S., Xie, Y. F., Lavine, N., Fan, J., Beraldo, F. H., Martyn, A. C., Belrose, J. C., Mori, Y., MacDonald, J. F., Prado, V. F., Prado, M. A., and Jackson, M. F. The transient receptor potential melastatin 2 (TRPM2) channel contributes to beta-amyloid oligomer-related neurotoxicity and memory impairment. J Neurosci. 2015; 35; 15157-15169
    Diomede, L., Romeo, M., Cagnotto, A., Rossi, A., Beeg, M., Stravalaci, M., Tagliavini, F., Di Fede, G., Gobbi, M., and Salmona, M. The new beta amyloid-derived peptide Abetal-6A2V-TAT(D) prevents Abeta oligomer formation and protects transgenic C. elegans from Abeta toxicity. Neurobiol Dis. 2016; 88; 75-84.
    Thapa, A., Jett, S. D., and Chi, E. Y. Curcumin Attenuates Amyloid-beta Aggregation Pathway. ACS Chem Neurosci. 2016; 7; 56-68.
    Puzzo, D., Lee, L., Palmeri, A., Calabrese, G. and Arancio, O. Behavioral assays with mouse models of alzheimer’s disease: Practical considerations and guidelines. Biochem pharmacology. 2014; 88; 450-467.

    無法下載圖示 電子全文延後公開
    2025/08/05
    QR CODE