簡易檢索 / 詳目顯示

研究生: 林威諭
Lin, Wei-Yu
論文名稱: 螢光散射層應用於二氧化鈦奈米管染料敏化太陽能電池之研究
Application of Phosphorescence as Scattering Layers for TiO2 Nanotube Based Dye-sensitized Solar Cells
指導教授: 郭金國
Kuo, Chin-Guo
學位類別: 碩士
Master
系所名稱: 工業教育學系
Department of Industrial Education
論文出版年: 2018
畢業學年度: 106
語文別: 中文
論文頁數: 84
中文關鍵詞: 染料敏化太陽能電池螢光散射層二氧化鈦奈米管陽極處理法
英文關鍵詞: DSSC, Phosphorescence Scattering Layer, TiO2 nanotube, ATO
DOI URL: http://doi.org/10.6345/THE.NTNU.DIE.037.2018.E01
論文種類: 學術論文
相關次數: 點閱:111下載:2
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 近年來綠色能源材料成為各方研究的主要目標,其中太陽能的技術與應用已然成為國際上永續能源的趨勢之一。在太陽能電池中,又以染料敏化太陽能電池具有製程簡易及良好可見光吸收等特性著稱。
    染料敏化太陽能電池的光電轉換效率與染料所產生的電子效率十分有關,通過增加染料的光捕獲能力是有效增強光電轉換效率的方法之一。本研究利用螢光粉材料特有的吸收光譜及放射光譜之特性與N719染料產生螢光共振能量轉移效應(Förster resonance energy transfer effect, FRET)。將N719染料響應較低的波段轉換成響應較高的波段(400-600nm)。
    本研究利用FRET效應,在電池的基礎結構上導入具有螢光特性的散射層,結果顯示,螢光散射層能提升染料敏化太陽能電池在380-530nm的量子轉換效率(IPCE),並提高光電轉換效率。以40µm TiO2薄膜所製成染料敏化太陽能電池效率達到4.17%,其中開路電壓為0.66 (V),電流通量為11.42 (mA/cm2),填充值FF為0.55,與增添0wt%螢光散層相比提升幅度達28.3%。

    Green energy materials become the main goal of research in recent years. The solar energy technology and application has become one of the international sustainable energy trends. Among the solar cells, dye-sensitized solar cells have characteristics of simple process and great absorption capacity of visible spectrum.
    The photon-to-electron conversion efficiency (PCE) of the dye-sensitized solar cells (DSSCs) strongly depends upon the electron generation efficiency from the dye molecules. One useful method in enhancing the PCE of DSSCs is to generate more electrons by enhancing the light harvesting of the dye molecules. The characteristic of the absorption and the emission spectrum of the phosphorescence material is used to produce Förster resonance energy transfer effect (FRET) with the N719 dye. The effect could convert less response spectrum into more response spectrum (400-600nm).
    This study would use the FRET to import a scattering layer with phosphorescence property to the structure of the cells. The results show that the phosphorescence scattering layer can improve the incident photon-to-electron conversion efficiency (IPCE) of the DSSCs at 380-530 nm and improve the PCE. The DSSCs made of 40μm TiO2 film and 7wt% phosphorescence scattering layer has an efficiency of 4.17%, of which Voc is 0.66V, Jsc is 11.42mA/cm2, and FF is 0.55, which is up to 28.3% compared with the DSSCs with 0wt% phosphorescence scattering layer.

    目次 摘要 i Abstract ii 目次 iii 表次 vi 圖次 vii 第一章 緒論 1 1.1 前言 1 1.2 太陽能技術發展 2 1.3 研究動機與目的 3 第二章 理論背景及文獻探討 5 2.1 太陽能電池工作原理 5 2.1.1 光電效應 5 2.1.2 光伏效應 6 2.2 太陽能電池的種類 7 2.2.1 矽晶太陽能電池 7 2.2.2 化合物太陽能電池 9 2.2.3 有機物或奈米結構太陽能電池 9 2.2.4 多層結構太陽能電池 10 2.3 染料敏化太陽能電池 12 2.3.1 染料敏化太陽能電池之作用原理 12 2.3.2 光電極 14 2.3.3 染料光敏化劑 16 2.3.4 電解質 18 2.3.5 對電極 19 2.4 二氧化鈦 20 2.4.1 晶體結構 20 2.4.2 二氧化鈦奈米管 21 2.5 螢光粉 24 2.5.1 螢光粉的結構 24 2.5.2 螢光粉的發光原理 26 2.5.3 影響螢光特性之因素 27 2.5.4 螢光共振能量轉移 30 第三章 實驗方法 33 3.1 實驗流程圖 34 3.2 實驗材料 35 3.3 實驗步驟 36 3.3.1 試片前處理 36 3.3.2 第一次陽極氧化處理 36 3.3.3 熱處理 37 3.3.4 第二次陽極氧化處理 38 3.3.5 奈米管陣列脫膜 38 3.3.6 奈米管陣列轉移 39 3.3.7 導入散射層 40 3.3.8 染料浸泡 41 3.3.9 封裝 41 3.4 實驗儀器 42 3.4.1 X-射線繞射分析 42 3.4.2 掃描式電子顯微鏡 44 3.4.3 紫外-可見分光光度計 45 3.4.4 螢光光譜分析儀 45 3.4.5 單波長光電轉化效率 46 3.4.6 電壓電流特性曲線分析 48 第四章 實驗結果與討論 51 4.1 二氧化鈦奈米管的微結構組織分析 51 4.1.1 不同電解液製備二氧化鈦奈米管 51 4.1.2 控制反應電壓製備二氧化鈦奈米管 52 4.1.3 控制反應時間製備二氧化鈦奈米管 54 4.2 光電極的微結構組織分析 60 4.2.1 黏著劑 60 4.2.2 散射層 60 4.3 光電極組成結構之XRD分析 63 4.3.1 二氧化鈦奈米管之XRD分析 63 4.3.2 散射層之XRD分析 63 4.4 染料與螢光之光學特性分析 65 4.4.1 N719染料之UV-Vis分析 65 4.4.2 螢光粉Y3Al5O12 (YAG)之螢光分析 66 4.4.3 TiO2/YAG螢光散射層製備光電極之螢光分析 66 4.5 導入不同螢光濃度的散射層對電池元件效率之改善 68 4.6 導入不同螢光濃度的散射層對電池元件IPCE之影響 71 4.7 不同薄膜厚度的光電極對電池元件之影響 72 第五章 結論與未來展望 75 5.1 結論 75 5.2 未來展望 76 參考文獻 77

    [1] McKinsey, Global Energy Perspective: Reference Case 2018, USA, 2018.
    [2] ITW01科技論壇,“2018年全球太陽能產量將達108千兆瓦”,2017。
    [3] Enerdata, “First year in which solar and wind net additions exceeded coal and gas,” UDI, 2016.
    [4] Gevorkian, P., Sustainable Energy System Engineering: The Complete Green Building Design Resource, New York, 2007.
    [5] 吳育任,“淺談太陽能電池的原理與應用”,臺大電機系科普系列,1-7頁,2014年4月號。
    [6] L. Kazmerski, Best Research-Cell Efficiencies, USA, 2016.
    [7] 工業技術研究院,“染料敏化太陽能電池”。
    取自https://www.itri.org.tw/chi/Content/MsgPic01/Contents.aspx?SiteID
    =1&MmmID=620624053204740250&MSid=620633242163733741
    [8] Russell Gaudiana, Alan Montello, US7351907B2, USA, 2008.
    [9] Jih-Jen Wu et al., “Performance and electron transport properties of TiO2 nanocomposite dye-sensitized solar cells,” Nanotechnology, 19, pp. 105702, 2008.
    [10] 物理雙月刊,“關於光產生和轉變的一個啟發性觀點”,653-659頁,27卷,第5期, 2005年10月。
    [11] 物理雙月刊,“1921年諾貝爾物理獎:阿爾伯特.愛因斯坦”,2017年8月。
    [12] EnergyTrend,“再談光伏發電的基本原理”,2013年。
    [13] 台灣太陽光電產業協會,“矽晶太陽電池技術、成本與性能”,TPVIA 2012年報,1-7頁,2012年。
    [14] 科技台灣,“基礎電子材料科學”,2012年。
    [15] 陳士偉,“淺談矽晶太陽能電池”,國家奈米元件實驗室奈米通訊, 40-42頁,24卷,1期,2017年3月。
    [16] Armin Richter, Martin Hermle, Stefan W. Glunz, “Reassessment of the Limiting Efficiency for Crystalline Silicon So lar Cells,” IEEE Journal of Photovoltaics, vol. 3, Issue: 4, 2013.
    [17] Frank Dimroth, 30.2 Percent Efficiency – New Record for Silicon-based Multi-junction Solar Cell, Germany, 2016.
    [18] Alferov, Zh. I., V. M. Andreev, M. B. Kagan, I. I. Protasov, and V. G. Trofim, “Solar-energy converters based on p-n AlxGa12xAs-GaAs heterojunctions,” Fiz. Tekh. Poluprovodn., 4, pp. 2378, 1970.
    [19] 伊萊·亞布鲁諾維契,“砷化鎵薄膜太陽能電池效率提升至28.4%”,勞倫斯伯克利國家實驗室,USA,2011年。
    [20] Philip Jackson, et al., “New world record efficiency for Cu(In,Ga)Se2 thin‐film solar cells beyond 20%,” Progress in Photovoltaics: Research and Applications, vol. 19, Issue: 7, 2010.
    [21] Kearns D., Calvin M. J.Chem, Phys. 29, pp. 950-951, 1958.
    [22] 蕭全佑 著、葉名倉 編輯,“有機太陽能電池(Organic Solar Cell)”,高瞻三期計畫課程,2010年。
    [23] DIGITIMES,“各類太陽能電池材料發展趨勢與比較”,2014年。
    取自:https://www.digitimes.com.tw/tw/dt/n/shwnws.asp?cnlid=13&id
    =0000397668_78v79qdf5uirem98jk6u7&ct=1
    [24] 黃建榮,“有機太陽能電池技術發展”,光連雙月刊,No.111,55-60頁,2014年5月。
    [25] Brian O'Regan, Michael Grätzel, “A low-cost, high-efficiency solar cell based on dye-sensitized colloidal TiO2 films,” Nature, 353(6346), pp. 737-740, 1991.
    [26] NREL, High-Concentration III-V Multijunction Solar Cells, NREL Photovoltaic Research, 2016.
    [27] 山口真史,“超高効率型太陽電池の研究動向”,月刊デイスプレイ2011,3月號,3-7頁,2011年3月。
    [28] Rheatsao,“夏普火力展示,推31.17%高效技術、新款BLACKSOLAR模組”,TrendForce Corp.,2016。
    [29] 太陽光電產業協會,“超高效率太陽能電池研究動向”,TPVIA產業報告,2012年。
    [30] H. TSUBOMURA, M. MATSUMURA, Y. NOMURA & T. AMAMIYA, “Dye sensitised zinc oxide: aqueous electrolyte: platinum photocell,” Nature, vol. 261, pp. 402-403, 1976.
    [31] Brian O'Regan and Michael Grätzel, “A low-cost, high-efficiency solar cell based on dye-sensitized colloidal TiO2 films,” Nature, vol. 353, pp. 737-740, 1991.
    [32] Md. K.Nazeeruddin et al., “A high molar extinction coefficient charge transfer sensitizer and its application in dye-sensitized solar cell,” Journal of Photochemistry and Photobiology A: Chemistry, vol. 185, Issues 2–3, pp. 331-337, 2007.
    [33] Mohammad K Nazeeruddin et al., “Engineering of Efficient Panchromatic Sensitizers for Nanocrystalline TiO2-Based Solar Cells,” Journal of the American Chemical Society, vol. 123, pp. 1613-1624, 2001.
    [34] U. Bach, D. Lupo, P. Comte, J. E. Moser, F. Weissörtel, J. Salbeck, H. Spreitzer and M. Grätzel, “Solid-state dye-sensitized mesoporous TiO2 solar cells with high photon-to-electron conversion efficiencies,” Nature, vol. 395, pp. 583–585, 1998.
    [35] 郭金國、倪健嵐、蕭力彰,“染料敏化太陽能電池原理與結構”,鑄造科技,241,22-26頁,2009年。
    [36] Yang-Yao Lee, Hassan El-Shall, “Ultra-high aspect ratio titania nanoflakes for dye-sensitized solar cells,” Applied Surface Science, 426, pp. 1263–1270, 2017.
    [37] D. J. Yang, S. C. Yang, J. M. Hong, H. Lee, I. D. Kim, J. Electroceram, 2008.
    [38] H. Wang, Y. Liu, M. Li, H. Huang, M. Zhong, H. Shen, Appl. Phys. A-Mater. Sci. Process., 97, pp. 25-29, 2009.
    [39] A Lamberti, A Sacco, S Bianco, D Manfredi et al., Phys. Chem. 15(7), pp. 2596-2602, 2013.
    [40] Burak Ünlü, Soner Çakar, Mahmut Özac, “The effects of metal doped TiO2 and dithizone-metal complexes on DSSCs performance,” Solar Energy, Vol. 166, Pages 441-449, 2018
    [41] Thavasi, V., Renugopalakrishnan, V., Jose, R., & Ramakrishna, S, “Controlled electron injection and transport at materials interfaces in dye sensitized solar cells”. Materials Science and Engineering R, 63, pp. 81-99, 2009.
    [42] 洪國晉,“鈮摻雜二氧化鈦奈米管陣列應用於染料敏化太陽能電池之研究”,國立臺灣師範大學,碩士,2016。
    [43] 陳信宏,“染料敏化太陽能電池近期發展”,光連雙月刊No.84,22-28頁,2009年11月。
    [44] Helena Greijer Agrell, Jan Lindgren, Anders Hagfeldt, Solar Energy, 75, pp. 169, 2003.
    [45] Antonio Luque,Steven Hegedus, Handbook of Photovoltaic Science and Engineering, pp. 672, USA, 2011.
    [46] Kim. S. Finnie, John R. Bartlett, and James L., Woolfrey, Langmuir, 14, pp. 2744, 1998.
    [47] C. Bauer, G. Boschloo, E. Mukhtar, A. Hagfeldt, J.Phys. Chem.B, 106, pp. 12693, 2002.
    [48] M. Ryan, “PGM HIGHLIGHTS: Progress in Ruthenium Complexes for Dye Sensitised Solar Cells,” Platinum Metals Rev., 53(4), pp. 216, 2009.
    [49] W. Kubo, S. Kambe, S. Nakade, T. Kitamura, K. Hanabusa, Y. Wada, S. Yanagida, “Photocurrent-determining processes in quasi-solid-state dye-sensitized solar cells using ionic gel electrolytes,” J. Phys. Chem. B, 107, pp. 4374-4381, 2003.
    [50] 李明威,“固體半導體敏化太陽電池-太陽能的明日之星”,物理雙月刊,37卷,No. 2,2005年。
    [51] Jeffrey A. Christians, Raymond C. M. Fung, and Prashant V. Kamat, “An Inorganic Hole Conductor for Organo-Lead Halide Perovskite Solar Cells. Improved Hole Conductivity with Copper Iodide”. J. Am. Chem. Soc., 136, 2, pp. 758-764, 2014.
    [52] Sara Thomas, T. G. Deepak, G. S. Anjusree, T. A. Arun, Shantikumar V. Nair and A. Sreekumaran Nair, “A review on counter electrode materials in dye-sensitized solar cells”. J. Mater. Chem. A, 2, pp. 4474, 2014.
    [53] J.M. Kroon, et al., “Nanocrystalline dye-sensitized solar cells having maximum performance”. Prog Photovolt Res Appl, 15, pp. 1-18, 2007.
    [54] Jikun Chen, et al., “A flexible carbon counter electrode for dye-sensitized solar cells”. Carbon, vol. 47, Issue: 11, pp. 2704-2708, 2009.
    [55] K. S. Lee, H. K. Lee, D. H. Wang, N. G. Park, J. Y. Lee, O. O. Park and J. H. Park, Chem. Commun., 46, pp. 4505–4507, 2010.
    [56] Clifford A. Hampel, The Encyclopedia of the Chemical Elements, New York, 1968.
    [57] 張昭賢,鈦電極工學,北京,冶金工業出版社,2003年。
    [58] Nie Xiliang, Zhuo Shuping, Maeng Gloria and Karl Sohlberg, “Doping of TiO2 Polymorphs for Altered Optical and Photocatalytic Properties,” International Journal of Photoenergy, 3, pp. 1248, 2009.
    [59] Diebold, U., “The surface science of titanium dioxide”. Surface science reports, 48(5), pp.53-229, 2003.
    [60] 徐維佑,“銳鈦礦型二氧化鈦系透明導電薄膜之製備”,國立臺北科技大學,碩士,2011。
    [61] Ho Chang, Chin-Guo Kuo, and Cheng-Yi Chou, “Highly-Ordered Arrays of TiO2 Thin Film for Dye-Sensitized Solar Cells Fabricated by Anodic Oxidation Process,” International Journal of Precision Engineering and Manufacturing, vol. 16, No. 7, pp.1-5, 2015.
    [62] Gopal K., MorOomman K. Varghese, Maggie Paulose, Karthik Shankar, Craig A. Grimes, “A review on highly ordered, vertically oriented TiO2nanotube arrays: Fabrication, material properties, and solar energy applications”. Solar Energy Materials & Solar Cells, 90, pp. 2011-2075, 2006.
    [63] Thomas M. Okon and James R. Biard, “The First Practical LED,” 2015.
    [64] 王書任和林仁鈞,“讓LED發光的功臣—螢光粉”,科學發展435,22-27頁,2009年。
    [65] 陳韋廷和劉如熹,“白光發光二極體用螢光粉原理及其特性”,光連雙月刊No.94,2011年。
    [66] J. A. Deluca, “An introduction to Luminescence in Inorganic Solids,” J. Chem. Edu., vol. 57, pp. 541-545, 1980.
    [67] R. C. Ropp, Luminescence and the Solid State 2nd, Amsterdam, 2004.
    [68] M. Sauer, J. Hofkens, and J. Enderlein, Handbook of Fluorescence Spectroscopy and Imaging, USA, 2011.
    [69] 柯韋志等人,“化學與光電”,國立臺灣大學化學系學刊,未出版,2009年。
    [70] Shriver D.F and Atkins P. W, Inorganic Chemistry 4th Edition, England: Oxford University Press. pp. 483, 2006.
    [71] Shriver D.F and Atkins P. W, Inorganic Chemistry 3th Edition, England: Oxford University Press. pp. 227-236, 2001.
    [72] Y. P. Varshini, “Temperature dependence of the energy gap in semiconductors,” Physica, vol. 34, pp. 149-154, 1967.
    [73] Don Tuite, “Understanding LED Application Theory And Practice,” Electronic Design, 2013.
    [74] Robert M Clegg, “Fluorescence resonance energy transfer,” Curr. Opin. Biotechnol., 6, pp.103-110, 1995.
    [75] Förster T., “Zwischenmolekulare Energiewanderung und Fluoreszenz,” Ann. Physik, 437, pp. 55, 1948.
    [76] T. Forster, Naturwissenschaften, 33, pp. 166-175, 1946.
    [77] Feng Tian, Jing Lyu, Jingyu Shi, Mo Yang, “Graphene and graphene-like two-denominational materials based fluorescence resonance energy transfer (FRET) assays for biological applications,” Biosensors and Bioelectronics, vol. 89, part 1, pp.123-135, 2016.
    [78] Yella, A., et al, “Porphyrin-Sensitized Solar Cells with Cobalt (II/III)-Based Redox Electrolyte Exceed 12 Percent Efficiency,” Science, vol. 334, No. 6056, pp. 629-634, 2011.
    [79] 何妤安、林裕傑、吳致中、張健忠和陳志銘,“螢光子之螢光共振能量轉移應用於染料敏化太陽能電池”,興大工程學刊,第26卷,1,25-33頁,2015年。
    [80] Yu-Jie Lin, Cheng-Chung Chang, Sheng-Jye Cherng, Jyun-WeiChen and Chih-Ming Chen, “Manipulation of light harvesting for efficient dyesensitized solar cell by doping an ultraviolet lightcapturing fluorophore,” Prog. Photovolt: Res. Appl, 23, pp. 106–111, 2015.
    [81] Yu-Jie Lin, Jyun-Wei Chen, Po-Tsung Hsiao, Yung-Liang Tung, Cheng-Chung Chang and Chih-Ming Chen, “Efficiency improvement of dye-sensitized solar cells by in situ fluorescence resonance energy transfer,” J. Mater. Chem. A, 5, 9081, 2017.
    [82] Meidan Que, Wenxiu Que, Xingtian Yin, Jinyou Shao, “Enhanced sunlight harvesting of dye-sensitized solar cells through the insertion of a (Sr, Ba, Eu)2SiO4-TiO2 composite layer,” Materials Research Bulletin, 83, pp. 19–23, 2013.

    下載圖示
    QR CODE