簡易檢索 / 詳目顯示

研究生: 盧詩潔
Lu, Shih-Chieh
論文名稱: 以QuEChERS方法搭配液相層析質譜技術定量紅酒樣品中的白藜蘆醇
Quantification of trans-Resveratrol in Red Wines using QuEChERS Extraction and Liquid Chromatography - Tandem Mass Spectrometry
指導教授: 陳頌方
Chen, Sung-Fang
學位類別: 碩士
Master
系所名稱: 化學系
Department of Chemistry
論文出版年: 2017
畢業學年度: 105
語文別: 英文
論文頁數: 69
中文關鍵詞: 白藜蘆醇QuEChERS液相層析-串聯式質譜儀紅酒定量
英文關鍵詞: Resveratrol, QuEChERS, HPLC-MS/MS, red wine, quantitation
DOI URL: https://doi.org/10.6345/NTNU202202941
論文種類: 學術論文
相關次數: 點閱:116下載:13
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 白藜蘆醇被證實有抗癌、抗發炎、抗心血管疾病等功效,甚或能調節新陳代謝、延長壽命。為定量白藜蘆醇,本實驗測試兩種樣品前處理方式:稀釋法以及一個快速、簡單、便宜、高效、穩固、便宜(QuEChERS)的萃取法。為能達到最佳萃取效率,我們針對紅酒樣品,優化QuEChERS萃取法之參數。最後選用1:1作為紅酒稀釋之比例、100%的乙腈作為液相萃取之溶劑,並混合300 mg一級二級胺(PSA)與300 mg無水硫酸鎂(MgSO4)作為分散式固相萃取(dSPE)之粉劑。接著,我們將稀釋法和優化後的QuEChERS萃取法,搭配高效能液相層析及串聯式質譜儀(HPLC-MS/MS),並對此二方法進行確效。QuEChERS搭配LC-MS/MS方法之線性範圍為5-500 ppb,最低偵測極限(LOD)為2.5 ppb、最低定量極限(LOQ)為5 ppb;其線性範圍與感度皆優於稀釋法。實驗中,使用兩不同前處理方式的回收率介於97.4%至111.3%,且相對標準差(RSD)皆小於4.9%(n=3)。最終,本實驗利用此二法檢測7種自市面上購得的紅酒樣品。在經檢出的3個樣品中,白藜蘆醇濃度介於5.5到498 ppb。本論文首度使用QuEChERS萃取法搭配LC-MS/MS技術進行紅酒中白藜蘆醇的定量分析研究。

    Resveratrol (3,5,4'-trihydroxy-trans-stilbene) has been proved to be anti-cancer, anti-inflammatory, cardiovascular protective and is probably able to promote metabolism as well as prolonging life of human beings. In this study, two preparation strategies, including direct dilution and a quick, easy, cheap, effective, rugged, and safe (QuEChERS) extraction, were examined for the quantification of resveratrol in red wines. A 1:1 wine/water dilution, 100% acetonitrile as LLE solvent, 300 mg primary and secondary amines (PSA) plus 300 mg anhydrous magnesium sulfate (MgSO4) as dSPE sorbent were found to give the best results. The dilution and optimal QuEChERS method combined with high performance liquid chromatography – mass spectrometry (HPLC-MS/MS) were further validated. A linear range between 5-500 ppb with LOD at 2.5 ppb and LOQ at 5.0 ppb by QuEChERS method are achieved, that shows broader linear range and superior sensitivity in comparison with dilution approach. The recoveries with the two preparation strategies ranged from 97.4% to 111.3% with RSD ≤ 4.9% (n=3). Eventually, resveratrol were detected in 3 out of 7 red wines from local markets, with concentrations within 5.5 to 498 ppb. To the best of our knowledge, this is the first report that combines efficient QuEChERS extraction with LC-MS/MS for the quantification of resveratrol in red wines.

    Acknowledgement I 中文摘要 II Abstract III Table of Contents IV List of Figures VII List of Tables IX Chapter 1 Introduction 1 1.1 Resveratrol 1 1.2 Sample Preparation 4 1.2.1 Direct Dilution 5 1.2.2 Solid-Phase Extraction 5 1.2.3 Liquid-Phase Extraction 7 1.2.4 QuEChERS Extraction 9 1.3 High-Performance Liquid Chromatography 11 1.3.1. Stationary Phase of HPLC Column 12 1.3.2. Detector 14 1.4 Mass Spectrometry 15 1.4.1 Electrospray Ionization 17 1.4.2 Triple Quadrupole Tandem Mass Spectrometer 19 1.4.3 Channel Electron Multiplier 22 1.5 Quantification with Multiple Reaction Monitoring 23 Chapter 2 Experimental Section 25 2.1 Materials 25 2.2 Apparatus 26 2.3 Samples 27 2.4 Methods 27 2.4.1 Sample Preparation 27 2.4.2 Liquid Chromatography Condition 31 2.4.3 Mass Spectrometry Parameters 31 2.4.4 Calibration Curves Plotting 32 2.4.5 Method Validation 33 2.4.6 Commercial Red Wine Sampling 35 Chapter 3 Results and Discussion 36 3.1 Liquid Chromatography Parameters 36 3.1.1. Column Selection 36 3.1.2. Mobile Phases 37 3.1.3. Gradient Optimization 37 3.2 Mass Spectrometry Parameters 39 3.2.1 Operational Parameters 39 3.2.2 Transition Selection and Optimization 41 3.3 Sample Preparation Optimization 43 3.3.1. Liquid-Liquid Microextraction 45 3.3.2. Dispersive solid-phase extraction (dSPE) 46 3.4 Blank Red Wine Definition 48 3.5 Method Validation 49 3.5.1 Linearity 49 3.5.2 Accuracy and Precision 52 3.5.3 Recovery 54 3.5.4 Matrix Effect 55 3.6 Time-course Experiment 57 3.7 Comparison with Other Resveratrol Detection Strategies 58 3.8 Quantification of Commercial Red Wines 61 Conclusions 62 Reference 63

    (1) Pervaiz, S.: Resveratrol: The Promise Therein. Herbal and traditional medicine : molecular aspects of health; Packer, L., Ong, C. N., Halliwell, B., Eds.; Marcel Dekker: New York, 2004; 941
    (2) Avila, P. R. M.; Marques, S. O.; Luciano, T. F.; Vitto, M. F.; Engelmann, J.; Souza, D. R.; Pereira, S. V.; Pinho, R. A.; Lira, F. S.; De Souza, C. T. Resveratrol and fish oil reduce catecholamine-induced mortality in obese rats: role of oxidative stress in the myocardium and aorta. Brit J Nutr 2013, 110, 1580-1590.
    (3) Hector, K. L.; Lagisz, M.; Nakagawa, S. The effect of resveratrol on longevity across species: a meta-analysis. Biol Letters 2012, 8, 790-793.
    (4) Urpi-Sarda, M.; Jauregui, O.; Lamuela-Raventos, R. M.; Jaeger, W.; Miksits, M.; Covas, M. I.; Andres-Lacueva, C. Uptake of diet resveratrol into the human low-density lipoprotein. Identification and quantification of resveratrol metabolites by liquid chromatography coupled with tandem mass spectrometry. Anal Chem 2005, 77, 3149-3155.
    (5) Yeo, S. C.; Luo, W.; Wu, J.; Ho, P. C.; Lin, H. S. Quantification of pinosylvin in rat plasma by liquid chromatography-tandem mass spectrometry: application to a pre-clinical pharmacokinetic study. J Chromatogr B Analyt Technol Biomed Life Sci 2013, 931, 68-74.
    (6) Wang, D.; Hang, T.; Wu, C.; Liu, W. Identification of the major metabolites of resveratrol in rat urine by HPLC-MS/MS. J Chromatogr B Analyt Technol Biomed Life Sci 2005, 829, 97-106.
    (7) Maier-Salamon, A.; Hagenauer, B.; Wirth, M.; Gabor, F.; Szekeres, T.; Jager, W. Increased transport of resveratrol across monolayers of the human intestinal Caco-2 cells is mediated by inhibition and saturation of metabolites. Pharmaceutical research 2006, 23, 2107-2115.
    (8) Careri, M.; Corradini, C.; Elviri, L.; Nicoletti, I.; Zagnoni, I. Liquid chromatography-electrospray tandem mass spectrometry of cis-resveratrol and trans-resveratrol: development, validation, and application of the method to red wine, grape, and winemaking byproducts. J Agric Food Chem 2004, 52, 6868-6874.
    (9) Zamora-Ros, R.; Urpi-Sarda, M.; Lamuela-Raventos, R. M.; Estruch, R.; Martinez-Gonzalez, M. A.; Bullo, M.; Aros, F.; Cherubini, A.; Andres-Lacueva, C. Resveratrol metabolites in urine as a biomarker of wine intake in free-living subjects: The PREDIMED Study. Free radical biology & medicine 2009, 46, 1562-1566.
    (10) Orallo, F. Comparative studies of the antioxidant effects of cis- and trans-resveratrol. Curr Med Chem 2006, 13, 87-98.
    (11) RomeroPerez, A. I.; LamuelaRaventos, R. M.; Buxaderas, S.; delaTorreBoronat, R. C. Resveratrol and piceid as varietal markers of white wines. J Agr Food Chem 1996, 44, 1975-1978.
    (12) Hashim, S. N.; Schwarz, L. J.; Boysen, R. I.; Yang, Y.; Danylec, B.; Hearn, M. T. Rapid solid-phase extraction and analysis of resveratrol and other polyphenols in red wine. J Chromatogr A 2013, 1313, 284-290.
    (13) Vinas, P.; Campillo, N.; Hernandez-Perez, M.; Hernandez-Cordoba, M. A comparison of solid-phase microextraction and stir bar sorptive extraction coupled to liquid chromatography for the rapid analysis of resveratrol isomers in wines, musts and fruit juices. Analytica chimica acta 2008, 611, 119-125.
    (14) Ma, F.; Li, P.; Zhang, Q.; Yu, L.; Zhang, L. Rapid determination of trans-resveratrol in vegetable oils using magnetic hydrophilic multi-walled carbon nanotubes as adsorbents followed by liquid chromatography-tandem mass spectrometry. Food Chem 2015, 178, 259-266.
    (15) Rodriguez-Cabo, T.; Rodriguez, I.; Cela, R. Determination of hydroxylated stilbenes in wine by dispersive liquid-liquid microextraction followed by gas chromatography mass spectrometry. J Chromatogr A 2012, 1258, 21-29.
    (16) Zhao, X.; Ma, F.; Li, P.; Li, G.; Zhang, L.; Zhang, Q.; Zhang, W.; Wang, X. Simultaneous determination of isoflavones and resveratrols for adulteration detection of soybean and peanut oils by mixed-mode SPE LC-MS/MS. Food Chem 2015, 176, 465-471.
    (17) Lu, Y.; Shen, Q.; Dai, Z. Multiwalled carbon nanotubes as sorbent for online solid-phase extraction of resveratrol in red wines prior to fused-core C18-based ultrahigh-performance liquid chromatography-tandem mass spectrometry quantification. J Agric Food Chem 2011, 59, 70-77.
    (18) Kocevar, N.; Glavac, I.; Injac, R.; Kreft, S. Comparison of capillary electrophoresis and high performance liquid chromatography for determination of flavonoids in Achillea millefolium. J Pharmaceut Biomed 2008, 46, 609-614.
    (19) Mcmurtrey, K. D.; Minn, J.; Pobanz, K.; Schultz, T. P. Analysis of Wines for Resveratrol Using Direct-Injection High-Pressure Liquid-Chromatography with Electrochemical Detection. J Agr Food Chem 1994, 42, 2077-2080.
    (20) Rodriguez-Delgado, M. A.; Gonzalez, G.; Perez-Trujillo, J. P.; Garcia-Montelongo, F. J. Trans-resveratrol in wines from the Canary Islands (Spain). Analysis by high performance liquid chromatography. Food Chemistry 2002, 76, 371-375.
    (21) Zhou, H.; Cui, H.; Wan, G. H.; Xu, H.; Pang, Y. Q.; Duan, C. F. Direct analysis of trans-resveratrol in red wine by high performance liquid chromatography with chemiluminescent detection. Food Chemistry 2004, 88, 613-620.
    (22) Jean-Denis, J. B.; Pezet, R.; Tabacchi, R. Rapid analysis of stilbenes and derivatives from downy mildew-infected grapevine leaves by liquid chromatography-atmospheric pressure photoionisation mass spectrometry. J Chromatogr A 2006, 1112, 263-268.
    (23) Felli, M.; Martello, S.; Chiarotti, M. LC-MS-MS method for simultaneous determination of THCCOOH and THCCOOH-glucuronide in urine: Application to workplace confirmation tests. Forensic science international 2011, 204, 67-73.
    (24) Li, Z.; Pittman, E. N.; Trinidad, D. A.; Romanoff, L. C.; Mulholland, J.; Sjodin, A. Determination of 43 polycyclic aromatic hydrocarbons in air particulate matter by use of direct elution and isotope dilution gas chromatography/mass spectrometry. Anal Bioanal Chem 2010, 396, 1321-1330.
    (25) Atrache, L. L.; Sabbah, S.; Morizur, J. P. Identification of phenyl-N-methylcarbamates and their transformation products in Tunisian surface water by solid-phase extraction liquid chromatography-tandem mass spectrometry. Talanta 2005, 65, 603-612.
    (26) Wang, C.; Zhang, Z.; Shen, Y.; Tian, Z.; Xu, D.; Han, C. Determination of validamycin A in agricultural food samples by solid-phase extraction combined with liquid chromatography-atmospheric pressure chemical ionisation-tandem mass spectrometry. Food Chem 2015, 169, 150-155.
    (27) Han, J.; Liu, Y.; Wang, R.; Yang, J.; Ling, V.; Borchers, C. H. Metabolic profiling of bile acids in human and mouse blood by LC-MS/MS in combination with phospholipid-depletion solid-phase extraction. Anal Chem 2015, 87, 1127-1136.
    (28) Simpson, N. J. K.: Solid-phase extraction : principles, techniques, and applications; Marcel Dekker: New York, 2000.
    (29) Gustavson, K. E.; DeVita, W. M.; Revis, A.; Harkin, J. M. Novel use of a dual-zone restricted access sorbent: normal-phase solid-phase extraction separation of methyl oleate from polynuclear aromatic hydrocarbons stemming from semi-permeable membrane devices. J Chromatogr A 2000, 883, 143-149.
    (30) Wu, Y. L.; Chen, R. X.; Xue, Y.; Yang, T.; Zhao, J.; Zhu, Y. Simultaneous determination of amantadine, rimantadine and memantine in chicken muscle using multi-walled carbon nanotubes as a reversed-dispersive solid phase extraction sorbent. J Chromatogr B Analyt Technol Biomed Life Sci 2014, 965, 197-205.
    (31) Payanan, T.; Leepipatpiboon, N.; Varanusupakul, P. Low-temperature cleanup with solid-phase extraction for the determination of polycyclic aromatic hydrocarbons in edible oils by reversed phase liquid chromatography with fluorescence detection. Food Chem 2013, 141, 2720-2726.
    (32) Shen, J. X.; Motyka, R. J.; Roach, J. P.; Hayes, R. N. Minimization of ion suppression in LC-MS/MS analysis through the application of strong cation exchange solid-phase extraction (SCX-SPE). J Pharm Biomed Anal 2005, 37, 359-367.
    (33) Elian, A. A.; Hackett, J. Anion exchange SPE and liquid chromatography-tandem mass spectrometry in GHB analysis. J Chromatogr B Analyt Technol Biomed Life Sci 2011, 879, 3752-3758.
    (34) Treybal, R. E.: Liquid extraction; 1st ed.; McGraw-Hill: New York, 1951.
    (35) Larsson, M.; Han, F. Determination of rifalazil in dog plasma by liquid-liquid extraction and LC-MS/MS: quality assessment by incurred sample analysis. J Pharm Biomed Anal 2007, 45, 616-624.
    (36) Nirogi, R.; Kandikere, V.; Komarneni, P.; Aleti, R.; Padala, N.; Kalaikadiban, I. Quantification of cinacalcet by LC-MS/MS using liquid-liquid extraction from 50 muL of plasma. J Pharm Biomed Anal 2011, 56, 373-381.
    (37) Anastassiades, M.; Lehotay, S. J.; Stajnbaher, D.; Schenck, F. J. Fast and easy multiresidue method employing acetonitrile extraction/partitioning and "dispersive solid-phase extraction" for the determination of pesticide residues in produce. J AOAC Int 2003, 86, 412-431.
    (38) Schenck, F. J.; Hobbs, J. E. Evaluation of the Quick, Easy, Cheap, Effective, Rugged, and Safe (QuEChERS) approach to pesticide residue analysis. B Environ Contam Tox 2004, 73, 24-30.
    (39) Lesueur, C.; Knittl, P.; Gartner, M.; Mentler, A.; Fuerhacker, M. Analysis of 140 pesticides from conventional farming foodstuff samples after extraction with the modified QuECheRS method. Food Control 2008, 19, 906-914.
    (40) Frenich, A. G.; Romero-Gonzalez, R.; Gomez-Perez, M. L.; Vidal, J. L. M. Multi-mycotoxin analysis in eggs using a QuEChERS-based extraction procedure and ultra-high-pressure liquid chromatography coupled to triple quadrupole mass spectrometry. Journal of Chromatography A 2011, 1218, 4349-4356.
    (41) Liu, H. Y.; Lin, S. L.; Fuh, M. R. Determination of chloramphenicol, thiamphenicol and florfenicol in milk and honey using modified QuEChERS extraction coupled with polymeric monolith-based capillary liquid chromatography tandem mass spectrometry. Talanta 2016, 150, 233-239.
    (42) Zhang, Z.; Feng, M.; Zhu, K.; Han, L.; Sapozhnikova, Y.; Lehotay, S. J. Multiresidue Analysis of Pesticides in Straw Roughage by Liquid Chromatography - Tandem Mass Spectrometry. J Agric Food Chem 2016.
    (43) Harris, D. C.: Quantitative chemical analysis; 8th ed.; W. H. Freeman and Co.: New York, 2010.
    (44) Fenn, J. B. Electrospray ionization mass spectrometry: How it all began. Journal of biomolecular techniques : JBT 2002, 13, 101-118.
    (45) Karas, M.; Hillenkamp, F. Laser desorption ionization of proteins with molecular masses exceeding 10,000 daltons. Anal Chem 1988, 60, 2299-2301.
    (46) Fenn, J. B.; Mann, M.; Meng, C. K.; Wong, S. F.; Whitehouse, C. M. Electrospray ionization for mass spectrometry of large biomolecules. Science 1989, 246, 64-71.
    (47) Ikonomou, M. G.; Blades, A. T.; Kebarle, P. Electrospray mass spectrometry of methanol and water solutions suppression of electric discharge with SF6 gas. Journal of the American Society for Mass Spectrometry 1991, 2, 497-505.
    (48) Dooley, K. C. Tandem mass spectrometry in the clinical chemistry laboratory. Clinical biochemistry 2003, 36, 471-481.
    (49) Hagman, C.; Ramstrom, M.; Hakansson, P.; Bergquist, J. Quantitative analysis of tryptic protein mixtures using electrospray ionization Fourier transform ion cyclotron resonance mass spectrometry. Journal of proteome research 2004, 3, 587-594.
    (50) El-Hawiet, A.; Kitova, E. N.; Klassen, J. S. Quantifying protein interactions with isomeric carbohydrate ligands using a catch and release electrospray ionization-mass spectrometry assay. Anal Chem 2013, 85, 7637-7644.
    (51) Li, H.; Wolff, J. J.; Van Orden, S. L.; Loo, J. A. Native top-down electrospray ionization-mass spectrometry of 158 kDa protein complex by high-resolution Fourier transform ion cyclotron resonance mass spectrometry. Anal Chem 2014, 86, 317-320.
    (52) Morrison, J. D. Personal Reminiscences of 40 Years of Mass-Spectrometry in Australia. Org Mass Spectrom 1991, 26, 183-194.
    (53) Yost, R. A.; Enke, C. G. Selected Ion Fragmentation with a Tandem Quadrupole Mass-Spectrometer. J Am Chem Soc 1978, 100, 2274-2275.
    (54) Anderson, L.; Hunter, C. L. Quantitative mass spectrometric multiple reaction monitoring assays for major plasma proteins. Molecular & cellular proteomics : MCP 2006, 5, 573-588.
    (55) Liang, J.; Wu, W. Y.; Sun, G. X.; Wang, D. D.; Hou, J. J.; Yang, W. Z.; Jiang, B. H.; Liu, X.; Guo, D. A. A dynamic multiple reaction monitoring method for the multiple components quantification of complex traditional Chinese medicine preparations: Niuhuang Shangqing pill as an example. J Chromatogr A 2013, 1294, 58-69.
    (56) Domanski, D.; Murphy, L. C.; Borchers, C. H. Assay development for the determination of phosphorylation stoichiometry using multiple reaction monitoring methods with and without phosphatase treatment: application to breast cancer signaling pathways. Anal Chem 2010, 82, 5610-5620.
    (57) Pizzutti, I. R.; de Kok, A.; Scholten, J.; Righi, L. W.; Cardoso, C. D.; Rohers, G. N.; da Silva, R. C. Development, optimization and validation of a multimethod for the determination of 36 mycotoxins in wines by liquid chromatography-tandem mass spectrometry. Talanta 2014, 129, 352-363.
    (58) Paya, P.; Anastassiades, M.; Mack, D.; Sigalova, I.; Tasdelen, B.; Oliva, J.; Barba, A. Analysis of pesticide residues using the Quick Easy Cheap Effective Rugged and Safe (QuEChERS) pesticide multiresidue method in combination with gas and liquid chromatography and tandem mass spectrometric detection. Anal Bioanal Chem 2007, 389, 1697-1714.
    (59) Fontana, A. R.; Bottini, R. High-throughput method based on quick, easy, cheap, effective, rugged and safe followed by liquid chromatography-multi-wavelength detection for the quantification of multiclass polyphenols in wines. J Chromatogr A 2014, 1342, 44-53.
    (60) Wang, P. C.; Lee, R. J.; Chen, C. Y.; Chou, C. C.; Lee, M. R. Determination of cyromazine and melamine in chicken eggs using quick, easy, cheap, effective, rugged and safe (QuEChERS) extraction coupled with liquid chromatography-tandem mass spectrometry. Analytica chimica acta 2012, 752, 78-86.
    (61) Duran-Meras, I.; Galeano-Diaz, T.; Airado-Rodriguez, D. Post-column on-line photochemical derivatization for the direct isocratic-LC-FLD analysis of resveratrol and piceid isomers in wine. Food Chem 2008, 109, 825-833.
    (62) Chiva-Blanch, G.; Urpi-Sarda, M.; Rotches-Ribalta, M.; Zamora-Ros, R.; Llorach, R.; Lamuela-Raventos, R. M.; Estruch, R.; Andres-Lacueva, C. Determination of resveratrol and piceid in beer matrices by solid-phase extraction and liquid chromatography-tandem mass spectrometry. J Chromatogr A 2011, 1218, 698-705.
    (63) Lyons, M. M.; Yu, C.; Toma, R. B.; Cho, S. Y.; Reiboldt, W.; Lee, J.; van Breemen, R. B. Resveratrol in raw and baked blueberries and bilberries. J Agric Food Chem 2003, 51, 5867-5870.
    (64) Gamoh, K.; Nakashima, K. Liquid chromatography/mass spectrometric determination of trans-resveratrol in wine using a tandem solid-phase extraction method. Rapid Commun Mass Spectrom 1999, 13, 1112-1115.
    (65) Goncalves, J.; Camara, J. S. New method for determination of (E)-resveratrol in wine based on microextraction using packed sorbent and ultra-performance liquid chromatography. J Sep Sci 2011, 34, 2376-2384.
    (66) Ramalingam, P.; Ko, Y. T. Validated LC-MS/MS method for simultaneous quantification of resveratrol levels in mouse plasma and brain and its application to pharmacokinetic and brain distribution studies. J Pharm Biomed Anal 2016, 119, 71-75.

    下載圖示
    QR CODE