研究生: |
楊凱傑 Kai-Chieh Yang |
---|---|
論文名稱: |
高頻振動輔助之智能化臥式精微工具機開發與Zerodur®陶瓷玻璃奈米研銑加工研究 Development of an intelligent horizontal micro machine tool with high-frequency vibration assisted machining and research of nano milling-grinding on Zerodur® glass ceramic |
指導教授: |
陳順同
Chen, Shun-Tong |
學位類別: |
碩士 Master |
系所名稱: |
機電工程學系 Department of Mechatronic Engineering |
論文出版年: | 2014 |
畢業學年度: | 102 |
語文別: | 中文 |
論文頁數: | 135 |
中文關鍵詞: | Zerodur®陶瓷玻璃 、含硼聚晶鑽石研銑刀具 、智能化研銑技術 、類延性模式 、高頻振動輔助加工 |
英文關鍵詞: | ZERODUR® glass-ceramic, BD-PCD milling-grinding cutting tool, intellectualized milling-grinding technique, quasi-ductile regime, high-frequency vibration assisted machining |
論文種類: | 學術論文 |
相關次數: | 點閱:196 下載:7 |
分享至: |
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
本研究主要目的係針對Zerodur®陶瓷玻璃硬脆材料,開發智能化研銑加工技術。Zerodur®陶瓷玻璃具極低的熱膨脹係數,良好的物理性質與化學穩定性,適用於航太科技與各種高端精密產業元件。但由於Zerodur®陶瓷玻璃的硬脆性質,加工過程極易造成脆性破壞。為使Zerodur®陶瓷玻璃能在延性模式下加工,本研究提出一種「高頻振動輔助之智能化臥式精微工具機」的原創設計,這項設計結合自行開發的「含硼聚晶鑽石研銑刀具」、「高頻振動輔助加工」與「智能化研銑力判斷機制」等技術,使Zerodur®陶瓷玻璃能在奈米深度下進行研銑加工。為避免研銑過程中發生脆性破壞,研銑力分別以「荷重元」及「平台電流」進行線上偵測,並依回授的研銑力調整刀具進給率,透由「智能化」機制判斷,使陶瓷玻璃能在非脆性破壞模式下加工。實驗證實,本研究所提智能化研銑技術,能有效減少Zerodur®陶瓷玻璃的脆性破壞發生,並改善加工面粗度,刀具平均磨耗率可降至0.005µm/mm。此外,實驗也發現,研銑過程中導入高頻振動輔助,除了能幫助切屑排除外,更能使表面粗糙度降至Ra0.388µm,並減緩研銑刀具的磨耗至0.002µm/mm程度。一個成功的微小立方體的Zerodur®陶瓷玻璃加工實例,驗證本研究所開發的整合型技術,著實能提供Zerodur®陶瓷玻璃在延性模式(Ductile regime)或類延性模式(Quasi-ductile regime)下加工,且製程所需成本低,容易控制,深具商化價值。
The primary purpose of the thesis is to develop an intellectualized milling-grinding technique for machining ZERODUR® glass-ceramic. ZERODUR® glass-ceramic which owns an extremely low coefficient of thermal expansion, excellent physical properties and chemical stability is very suitable for the fabrication of various micro components in aerospace and high-precision optical industry. However, brittle fracture will be easy occurred following the progress of machining such as brittle material. To machine the ZERODUR® glass-ceramic under ductile or quasi-ductile regime, an intelligent horizontal micro machine tool is developed and proposed in this study. The innovation combines a home-made boron-doped polycrystalline composite diamond (BD-PCD) tool with high-frequency vibration assisted machining and intellectualized milling-grinding force detection. The machining force measurement via the designed load-cells and the stage-current to on-line detect the force coming from machining resistance of the glass-ceramic workpiece for self-regulating the tool’s feed-rate is recommended. Milling-grinding can be implemented favorably under a non-brittle fracture regime. Experimental results indicated that the intellectualized milling-grinding technique decreases evidently the probability of brittle fracture of the machined glass, improving its surface roughness and reducing the tool wear rate down to 0.005µm per mm. Besides which, the high-frequency vibration assisted machining is also confirmed that can help in sending out the debris, improving the surface roughness (Ra 0.388µm) and alleviating the tool wear rate (0.002µm per mm). How the self-regulating feed-rate works is carefully examined and verified in the manufacture of a miniaturized cube on ZERODUR® glass-ceramic. It is demonstrated that the proposed integrated technique can achieve a machining on ductile or quasi-ductile regime on the hard-brittle glass-ceramic. The technique is inexpensive and easily controllable, which is worthy of commercialization.
1. H.N. Hansen, K. Carneiro, H. Haitjema, L. De Chiffre, Dimensional micro and nano metrology, Annals of the CIRP, vol.55/2, pp.721-743, 2006
2. N. Taniguchi, Ultra precision machining and ultrafine materials processing, Annals of the CIRP, vol.32/2, pp.573-582, 1983
3. 臺灣機械工業同業公會,微細精密加工的新技術,2011,http://www.tami.org.tw/market/seisanzai/sei-201101p2635.pdf
4. 汪建民,精密陶瓷科技,工業技術研究院工業材料研究所, pp.332, 1987
5. E.D. Zanotto, A bright future for glass-ceramics, American Ceramic Society Bulletin, American ceramic society bulletin-Emerging ceramics & Glass technology, vol.89, no.8, 2010
6. W. Höland, G.H. Beall, Glass-Ceramic Technology, Second Edition, The American Ceramic Society, 2012
7. H. Sumiya, T. Irifune, Indentation hardness of nano-polycrystalline diamond prepared from graphite by direct conversion, Diamond & Related Materials, vol.13, pp.1771-1776, 2004
8. B. Yang, X. Shen and S. Lei, Mechanisms of edge chipping in laser- assisted milling of silicon nitride ceramics, International Journal of Machine Tools and Manufacture, vol.49, pp.344-350, 2009
9. R. Singh, S. N Melkote, Characterization of a hybrid laser-assisted mechanical micromachining (LAMM) process for a difficult–to- machine material, International Journal of Machine Tools and Manufacture, vol.47, pp.1139-1150, 2007
10. B. Yang, X. Shen and S. Lei, Mechanisms of edge chipping in laser-assisted milling of silicon nitride ceramics, International Journal of Machine Tools and Manufacture, vol.49, pp.344-350, 2009
11. S.F. Tseng , M.F. Chen, W.T. Hsiao, C.Y. Huang, C.H. Yang and Y.S. Chen , Laser micro milling of convex micro fluidic channels onto glassy carbon for glass molding dies, Optics and Lasers in Engineering, vol.57, pp.58–63, 2014
12. 李嘉富,認識雷射切割,2001,http://www.vtu.nat.gov.tw/admin/ability Front.do?act=load&materialId=null&countName=pdf&countId=5145&attName=uploadFile/material/5145/301.pdf
13. D.S. Park, M.W. Chob, H. Lee b, W.S. Choc, Micro-grooving of glass using micro-abrasive jet machining, Journal of Materials Processing Technology, vol.146, pp.234-240, 2004
14. T. Matsumura , T. Muramatsu, S. Fueki, Abrasive water jet machining of glass with stagnation effect, CIRP Annals - Manufacturing Technology, vol.60, pp.355-358, 2011
15. H. Nouraei, K. Kowsari, J.K. Spelt, M. Papini, Surface evolution models for abrasive slurry jet micro-machining of channels and holes in glass, Wear, vol.309, pp.65–73, 2014
16. M. Arif, M. Rahman and Y.S. Wong, Ultraprecision ductile mode machining of glass by micromilling process, Journal of Manufacturing Process, vol.13, pp.50-59, 2011
17. K.E. Puttick, M.R. Rudman, K.J. Smith, A. Franks and K. Lindsey, Single-point diamond machining of glasses, Proceedings of the Royal Society of London, vol.426, pp.19-30, 1989
18. C.J. Morgan, R.R. Vallance and E.R. Marsh, Micro machining glass with polycrystalline diamond tools shaped by micro electro discharge machining, Journal of micro menhanics and micro engineering, vol.14, pp.1687-1692, 2004
19. T. Matsumura, P. Aristimuno, E. Gandarias, P.J. Arrazola, Cutting process in glass peripheral milling, Journal of Materials Processing Technology, vol.213, pp.1523-1531, 2013
20. P. Shore, C. Cunningham, D. DeBra, C. Evans, J. Hough, R. Gilmozzi, H. Kunzmann, P. Morantz, X. Tonnellier, Precision engineering for astronomy and gravity science, CIRP Annals-Manufacturing Technology, vol.59, pp.694–716, 2010
21. X. Tonnellier, P. Morantz, P. Shore, A. Baldwin, R. Evans and D.D. Walker, Subsurface damage in precision ground ULE® and Zerodur® surfaces, OPTICS EXPRESS, vol.15, no.19, 2007
22. S. Yin, H. Ohmori, Y. Dai, Y. Uehara, F. Chen, H. Tang, ELID grinding characteristics of glass – ceramic materials, International Journal of Machine Tools & Manufacture, vol.49, pp.333–338, 2009
23. 陳偉恩,含硼聚晶鑽石材料最新研究之探討,碩士論文,華梵大學,機電工程學系,2010
24. K. Okano, Y. Akiba, T. Kurosu, M. Iida and T. Nkamura, Synthesis of B-doped diamond film, Journal of Crystal Growth, vol.99, pp.1192-1195, 1990
25. V.A. Sidorov, E.A. Ekimov, E.D. Bauer, N.N. Melnik, N.J. Curro, V. Fritsch,J.D. Thompson, S.M. Stishov, A.E. Alexenko, B.V. Spitsyn, Superconductivity in boron-doped diamond, Diamond & Related Materials, vol.14, pp.334-339, 2005
26. K. Suzuki, Y. Shiraishi, N. Nakajima, M. Iwai, S. Ninomiya, Y. Tanaka, T. Uematsu, Development of New PCD Made Up of Boron Doped Diamond Particles and its Machinability by EDM, Advanced Materials Research, vol.76-78, pp.684-689, 2009
27. S.T. Chen and C.H. Chang, Development of an ultrathin BD-PCD wheel-tool for in situ microgroove generation on NAK80 mold steel, Journal of Materials Processing Technology, vol.213, pp.740-751, 2013
28. P. Legge, Ultrasonic drilling of ceramics, Industrial diamond review, vol.124, pp.20-24, 1964
29. 林萬迪,超音波振動輔助電泳沉積於石英微孔加工特性研究,碩士論文,國立中央大學,機械工程學系,2009
30. E. Shamoto, T. Moriwaki, Study on elliptical vibration cutting, CIRP Annals - Manufacturing Technology, vol.43, pp.35-38, 1994
31. M. Zhou, X.J. Wang, B.K.A. Ngoi and J.G.K. Gan, Brittle–ductile transition in the diamond cutting of glasses with the aid of ultrasonic vibration, Journal of Materials Processing Technology, vol.121, pp.243-251, 2002
32. K. Egashira and K. Mizutani, Ultrasonic vibration drilling of microholes in glass, CIRP Annals - Manufacturing Technology, vol.51, pp.339-342, 2002
33. X.H. Yang, J.C. Han, Y.M. Zhang, H.B. Zuo and X.J. Zhang, Research on ultrasonic vibration grinding of the hard and brittle materials, Chinese Journal of Aeronautics, vol.19, pp.9-13, 2006
34. C. Nath, M. Rahman, K. S. Neo, Machinability study of tungsten carbide using PCD tools under ultrasonic elliptical vibration cutting, International Journal of Machine Tools & Manufacture, vol.49, pp.1089-1095, 2009
35. BBC Research Market Forecasting, http://www.bccresearch.com/
36. Photonics 21, http://www.photonics21.de/index.php
37. M. Arif, M. Rahman and Y. S. Wong, Ultra precision ductile mode machining of glass by micro milling process, Journal of Manufacturing Process, vol.13, pp.50-59, 2011
38. Schott, ZERODUR® - Extremely low expansion glass ceramic, 2013, http://www.schott.com/advanced_optics/english/download/schott-zerodur-general-may-2013-eng.pdf
39. 陳順同,超精密加工,講義,國立臺灣師範大學機電工程學系,2012
40. S. Blackeley, R.O. Scattergood, Mechanics of material removal in diamond turning, Proceedings of ASPE Annual Meeting, Rochester NY, USA, pp. 68-71, 1990
41. B.K.A. Ngoi, P.S. Sreejith, Ductile regime finish machining – a review, The International Journal of Advanced Manufacturing Technology, vol.16, pp.547-550, 2000
42. 劉傳璽、陳進來,半導體元件物理與製程:理論與實務,pp.8-11,二版,五南圖書,2007
43. 陳信文,單晶、鑽石與奈米材料,科學發展,第355期,pp.34-37,2002
44. K. Okano, Y. Akiba, T. Kurosu, M. Iida, T. Nakamura, Synthesis of B-doped diamond film, Journal of Crystal Growth, vol.99, pp.1192-1195, 1990
45. S.T. Chen and C.H. Chang, Development of an ultrathin BD-PCD wheel-tool for in situ microgroove generation on NAK80 mold steel, Journal of Materials Processing Technology, vol.213, pp.740-751, 2013
46. C. Sommer, Non-traditional machining handbook, Advance Publishing, Inc., pp.117-124, 2000
47. 董光雄,放電加工,復文書局出版社, pp.74-75, 1988
48. Sakshat virtual labs,To study erosion mechanism from Lazarenko's model, http://coep.vlab.co.in/
49. 蕭瑞陽,放電加工原理與應用-線切割放電加工, http://eshare.stut.edu.tw/EshareFile/2010_4/2010_4_e1e12437.ppt/
50. G.M. Ma, C.R. Li, J. Jiang, Y.T. Luo and Y.C. Cheng, A novel optical load cell used in icing monitoring on overhead transmission lines, Cold Regions Science and Technology, vol.42, pp.67-72, 2012
51. 蔡鴻彰,認識應變規及重量感測電路,中華民國職業訓練研究發展中心,pp.15,2001
52. 南樺電子報,Load cell荷重元產品及動作原理介紹,vol.186,2011, http://cht.nahua.com.tw/epaper/2011/186/
53. 王威力、廖文輝、曾吉村,荷重元工作原理探討-使用COMSOL, Excerpt from the proceedings of the COMSOL Users Conference, 2007
54. KYOWA, How strain gages work, Strain Gage Bonding Manual, pp.1-8, 2011, http://www.jor.se/measurement/Kyowa/Kyowa-PDF/howsgw.pdf
55. AEROTECH inc, Aerotech - Advanced Automation Division, Amplifier Training, pp.19-25, 2006
56. AEROTECH inc, The unidex 500 motion conrtroller and windows software, Operation & Technical Manual, Version 1.3, pp.6-1, 2000
57. 台灣大學電機系,壓電效應-歷史與應用,1982,http://mail.tajen.edu.tw/~scsheen/jetphoto/piezo.pdf
58. Physik Instrumente PI, Piezo Nano Positioning, The world of micro- and nano positioning, 2005
59. Low voltage co-fired multilayer stacks, Rings and chips for actuation, http://www.piezomechanik.com/en/introduction/
60. First Steps towards Piezoaction, Piezomechanik GmbH, http://www.piezomechanik.com/en/introduction/
61. 慶鴻機電工業股份有限公司,CNC線切割放電加工機,線切割機保養手冊,B1 edition,2008
62. 台中精機,立式綜合加工機,http://www.or.com.tw/uploads/product/ OR_Vcenter_55_70.pdf
63. 臺灣機械工業同業公會,放電加工技術趨勢與分析,2014,http://www.tami.org.tw/print/book-11-557/20030700.htm
64. Sodick,NC放電加工機AP1L premium,使用說明書,ver3.0,2008
65. 壓電陶瓷材料,Piezomechanik GmbH,http://www.piezomechanik.com/
66. PiezoMaster, VP7206 Technical Information - Wiring and Connections, http://www.piezomaster.com/TechnicalInfo.htm
67. 函數波信號產生器,茂迪股份有限公司,http://www.motechsolar.com/
68. 功率放大器,Piezo Master,http://piezomaster.com/
69. NAKANISHI, Micro-grinder, Motors & Spindles, 08/09 Edition, pp.2-13, 2008
70. NAKANISHI, E3000C operation manual, pp.5, 2008
71. 金慶和企業有限公司,精密研磨拋光機, http://www.hchtest.com.tw/series15.html
72. 漢磊股份有限公司,工具顯微鏡,http://www.aixon.com.tw/
73. JEOL USA inc, Scanning Elextron Microscope JSM-6360, http://www.jeolusa.com/Default.aspx?tabid=174
74. OLYMPUS,3D測量雷射共焦顯微鏡,http://www.olympus-ims.com/ en/metrology/ols4000/
75. 混合訊號示波器,太克科技,http://www1.tek.com/zh-tw/
76. BRUKER inc, X-ray diffraction solutions D8 advance, http://www.bruk er.com/tw/products/x-ray-diffraction-and-elemental-analysis/x-ray-diffracti on/d8-advance/overview.html
77. BRUKER inc, Senterra raman microscope, http://www.bruker.co m/cn/products/infrared-near-infrared-and-raman-spectroscopy/raman/sente rra/overview.html
78. T. Döhring, B. Jedamzik, A. Thomas, P. Hartmann, Forty years of Zerodur® mirror substrates for astronomy: review and outlook, Proceedings of the SPIE, vol.7018, pp.12, 2008
79. Schott, Zerodur®–Extremely low expansion glass ceramic, 2013, http://www.schott.com/advanced_optics/english/download/schott-zerodur-general-may-2013-eng.pdf
80. Schott Lithotec, Zerodur®–Zero thermal expansion glass ceramic, http://sydor.com/pdfs/Schott_zerodur.pdf
81. 宋健民,鑽石合成,台北市:全華科技圖書股份有限公司,2000
82. E. Mah´e, D. Devilliers, Ch. Comninellis, Electrochemical reactivity at graphitic micro-domains on polycrystalline boron doped diamond thin-films electrodes, Electrochimica Acta, vol.50, pp.2263-2277, 2005
83. NSK, Precision Machinery & Parts, NSK Ltds., pp.10
84. Aerotech, NANO motion technology - ANT95-XY Series, pp.25-30, http://www.aerotech.com/
85. Aerotech, Vertical Lift Stages - AVL125 Series, pp.478-481, http://www.aerotech.com/
86. K. Cheng, Machining Dynamics: Fundamentals, Applications and Practices Springer, pp.1-16, 2009
87. R.E. Sonntag, C. Borgnakke, Engineeering thermodynamics, 2th edition, pp.25-26, 2006
88. J.L. Meriam, L.G. Kraige, Engineering mechanics dynamics, 5th edition, pp.56-58, 2003
89. Y. Chen, L.C. Zhang, J.A. Arsecularatne, Polishing of polycrystalline diamond by the technique of dynamic friction. Part 2: Material removal mechanism, International Journal of Machine Tools and Manufacture, vol.47, pp.1615-1624, 2007
90. 庄司克雄,超精密加工と非球面加工,NTS,ISBN4-8043-059-X C3050,pp.4-5,2004
91. 賴運正,精微超硬研削工具線上開發與應用,碩士論文,國立臺灣師範大學機電科技學系,pp.21-22,2010
92. F.W. Taylor, On the art of cutting metals, Transactions of ASME, vol.28, pp.31-58, 1907