簡易檢索 / 詳目顯示

研究生: 陳政揚
論文名稱: 開發凝集素-苯亞硼酸修飾奈米探針輔助親和性質譜法應用於快速醣蛋白分析
指導教授: 洪偉修
Hung, Wei-Hsiu
陳玉如
Chen, Yu-Ju
學位類別: 碩士
Master
系所名稱: 化學系
Department of Chemistry
論文出版年: 2010
畢業學年度: 98
語文別: 英文
論文頁數: 84
中文關鍵詞: 磁性奈米粒子苯亞硼酸醣蛋白萃取
論文種類: 學術論文
相關次數: 點閱:272下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 醣基化是一個重要而且普遍的蛋白質轉譯後修飾。醣蛋白參與許多重要的生物功能,例如蛋白質分選(protein sorting)、免疫辨識(immune recognition)、受體結合(receptor binding)、發炎反應(inflammation),以及致病性(pathogenicity)等。更重要的是,在體液中存在有許多醣蛋白,可以用來作為診斷和治療的依據。但由於醣蛋白中醣鏈結構的高度複雜性,導致每一種醣蛋白異構物在自然界中皆呈現相對低濃度。因此,為深入分析完整的醣蛋白質體,有效的萃取步驟是不可或缺的。如何能快速、有效率且正確的檢測醣蛋白,迄今仍面臨著極大的挑戰。為了解決這個問題,我們開發奈米探針輔助親和性質譜法(nanoprobe-based affinity mass spectrometry ; NBAMS),集結了新設計的雙功能磁性奈米粒子以及利用飛行時間質譜法(MALDI-TOF MS),提供快速且高效能的蛋白質萃取及鑑定。相較於傳統上個別利用凝集素或苯亞硼酸萃取醣蛋白的方式,我們設計了凝集素(lectin)-亞硼酸修飾的雙功能磁性奈米粒子(BA-lectin@MNP)。其優點在於,凝集素可提供專一性親和力,而醣鏈上的1,2-順二醇(1,2-cis diol)和苯亞硼酸(phenylboronic aicd)之間形成共價鍵結;前者能萃取特定的醣蛋白,而後者則能進一步的透過共價鍵結穩固奈米粒子與醣蛋白之間的作用力,並顯著的增進醣蛋白萃取的效果。這些功能性修飾的磁性奈米粒子在蛋白質混合物中展現專一選擇性,捕捉特定的醣蛋白。而不同的濃度之下,使用BA-lectin@MNP對於特定醣蛋白的萃取效能超越lectin@MNP 2-7倍,並為BA@MNP的6-28倍。我們發現,在凝集素上修飾苯亞硼酸可以在低濃度下增強醣蛋白萃取的效果。藉由MALDI-TOF MS的偵測,BA-lectin@MNP可萃取最低濃度到0.005 μg/μL的醣蛋白。至此,我們期望以亞硼酸修飾為主的磁性奈米粒子可以廣泛的應用於醣蛋白萃取研究,並發現臨床診斷上具有代表意義的生物標記醣蛋白。

    Glycosylation is an important and perhaps most abundant form of protein post-translational modification. Glycoproteins participate in diverse biological functions such as protein sorting, immune recognition, receptor binding, inflammation, and pathogenicity. More importantly, many glycoproteins present in body fluids are used for diagnostic and therapeutic purposes. However, it is still a great challenge to analyze the glycoproteins due to the facts that glycoproteins usually bear enormous structural complexity of glycans and present at a relatively low concentration. An efficient enrichment step is essential for complete characterization of a glycoproteome. To address this issue, we developed a nanoprobe-based affinity mass spectrometric method which integrates the newly designed bi-functional MNPs and direct protein identification by MALDI-TOF MS for rapid and efficient enrichment of glycoproteins. Compared with conventional tag by lectin or phenylboronic acid (BA), we design hybrid conjugation of BAdecorated lectin on magnetic nanoparticle. The bi-functional MNPs, named lectin-phenylboronic acid functionalized magnetic nanoparticle (BA-lectin@MNP), took advantages of the specific affinity interaction of lectins with their ligands and the covalent binding between 1,2-cis diol from glycans and the phenylboronic acid; the former provides enrichment specificity while the latter further stabilize the binding affinity. These functionalized MNPs demonstrated selective capture of glycoproteins from a mixture of proteins and glycoproteins. The enrichment efficiency of BA-lectin@MNP showed 2- to 7-fold higher intensities than those isolated by lectin@MNP and 6- to 28-fold by BA@MNP under different concentrations. Decoration of BA on lectin improves the enrichment performance under low concentration and the detection limit of glycoprotein enrichment using BA-lectin@MNP and MALDI-TOF MS was as low as 0.005 μg/μL. We expect that the use of BA-lectin@MNP-based mass spectrometric method provides a powerful tool for glycoprotein enrichment, facilitating the subsequent analysis of glycoproteins and discovery of new potential diagnostic and therapeutic markers.

    Table of Contents 謝誌...I 中文摘要...II Abstract...III Table of Contents...V List of Figures and Tables...VII Abbreviations...X CHAPTER 1. Introduction...1 1.1 Glycoproteomics...1 1.1.1 Significance of Glycoproteins...1 1.1.2 Challenges on Glycoprotein Analysis...1 1.2 Strategy in Glycoprotein Enrichment...2 1.2.1 Lectin Affinity Chromatography...3 1.2.2 Hydrophilic Interaction Liquid Chromatography (HILIC)...4 1.2.3 Chemical Methods...4 1.3 Recent Advancements in Glycoproteomic Methodology...8 1.4 Magnetic Nanoprobe-based method for Glycoprotein Enrichment...9 1.5 Objective...11 CHAPTER 2. Experimental Section...13 2.1 Materials...13 2.1.1 Standard Proteins...13 2.1.2 Chemicals...15 2.1.3 Synthesis of Magnetic Nanoparticles...15 2.1.3.1 Preparation of Core Magnetic Nanoparticle (Fe3O4)...15 2.1.3.2 Preparation of Terminal Amine Silanated MNP (NH2@MNP)...15 2.1.3.3 Preparation of BA@MNP...15 2.1.3.4 Preparation of TEG-BA@MNP...16 2.1.3.5 Fabrication of Lectin@MNP...16 2.1.3.6 Fabrication of BA-lectin@MNP...17 2.1.3.7 Preparation of Blank@MNP...17 2.2 Experimental Method...18 2.2.1 Matrix Selection...18 2.2.2 Glycoprotein Enrichment using Boronic Acid Functionalized Magnetic Nanoparticles (BA@MNP)...18 2.2.2.1 Selection of Linkers on BA@MNP...18 2.2.2.2 Selection of Elution Buffer...19 2.2.2.3 Glycoprotein affinity...19 2.2.2.4 Glycoprotein Enrichment under Different pH...20 2.2.2.5 Detection limit...20 2.2.3 Glycoprotein Enrichment using Boronic acid-modified Lectin Functionalized Magnetic Nanoparticle (BA-Lectin@MNP)...21 2.2.3.1 Glycoprotein Enrichment by Lectin@MNP and BA-lectin @MNP...21 2.2.3.2 Optimization of Elution buffer for BA-lectin@MNP...21 2.2.3.3 Enrichment Sensitivity of BA-ConA@MNP, ConA@MNP and BA@MNP...22 2.2.3.4 Specificity of BA-lectin@MNP...22 2.3 Instrumentation...22 2.3.1 MALDI-TOF Mass Spectrometry...22 2.3.2 SDS-PAGE...23 CHAPTER 3 Results and Discussion...25 3.1 Workflow for Glycoprotein Enrichment by Hybrid Phenylboronic acid-Lectin - Functionalized Magnetic Nanoparticle...25 3.2 MALDI Matrix Evaluation...26 3.3 Pre-evaluation of Parameters for Glycoprotein Enrichment by Boronic Acid Functionalized MNP...27 3.3.1 Comparison of Different Linkers on BA@MNP...27 3.3.2 Optimization of Elution Buffer...28 3.3.3. The Effect of pH on Glycoprotein Enrichment Efficiency of BA@MNP...30 3.3.4 Detection Sensitivity of HRP by BA@MNP and MALDI-TOF MS...30 3.4 Improvement of Glycoprotein Enrichment by Bi-functional MNP (BA-lectin@MNP)...31 3.4.1 Optimization of Glycoprotein Elution for BA-ConA@MNP...32 3.4.2 Improvement of Detection Limit by BA-lectin@MNP...34 3.4.3 Specificity of BA-ConA@MNP...36 3.4.4 General Applicability of various Boronic Acid Modified Lectin@MNPs...36 CHAPTER 4 Conclusion...39 Appendix I...59 Appendix II...60 Appendix III...83 Reference...84

    [1] Hsu, D. K., Chen, H. Y., Liu, F. T., Galectin-3 regulates T-cell functions. Immunol Rev 2009, 230, 114-127.
    [2] Gupta, G., Sinha, S., Mitra, N., Surolia, A., Probing into the role of conserved N-glycosylation sites in the Tyrosinase glycoprotein family. Glycoconj J 2009, 26, 691-695.
    [3] Wulff, B. B., Chakrabarti, A., Jones, D. A., Recognitional specificity and evolution in the tomato-Cladosporium fulvum pathosystem. Mol Plant Microbe Interact 2009, 22, 1191-1202.
    [4] Pace, K. E., Lee, C., Stewart, P. L., Baum, L. G., Restricted receptor segregation into membrane microdomains occurs on human T cells during apoptosis induced by galectin-1. J Immunol 1999, 163, 3801-3811.
    [5] Shimizu, K., Taniichi, T., Satomura, S., Matsuura, S., et al., Establishment of assay kits for the determination of microheterogeneities of alpha-fetoprotein using lectin-affinity electrophoresis. Clin Chim Acta 1993, 214, 3-12.
    [6] Zhang, H., Li, X. J., Martin, D. B., Aebersold, R., Identification and quantification of N-linked glycoproteins using hydrazide chemistry, stable isotope labeling and mass spectrometry. Nat Biotechnol 2003, 21, 660-666.
    [7] Diamandis, E. P., Mass spectrometry as a diagnostic and a cancer biomarker discovery tool: opportunities and potential limitations. Mol Cell Proteomics 2004, 3, 367-378.
    [8] Butch, A., Tietz textbook of clinical chemistry : ed. 2. C. A. Burtis and E. R. Ashwood. Philadelphia, Saunders, 1994, 2,368 pages, $125.00. Human Pathology 1995, 26, 1391-1392.
    [9] Chakel, J. A., Pungor, E., Jr., Hancock, W. S., Swedberg, S. A., Analysis of recombinant DNA-derived glycoproteins via high-performance capillary electrophoresis coupled with off-line matrix-assisted laser desorption ionization time-of-flight mass spectrometry. J Chromatogr B Biomed Sci Appl 1997, 689, 215-220.
    [10] Hirabayashi, J., Kasai, K.-i., Separation technologies for glycomics. Journal of Chromatography B: Analytical Technologies in the Biomedical and Life Sciences 2002, 771, 67-87.
    [11] Xiong, L., Andrews, D., Regnier, F., Comparative proteomics of glycoproteins based on lectin selection and isotope coding. J Proteome Res 2003, 2, 618-625.
    [12] Madera, M., Mechref, Y., Novotny, M. V., Combining lectin microcolumns with high-resolution separation techniques for enrichment of glycoproteins and glycopeptides. Anal Chem 2005, 77, 4081-4090.
    [13] Nawarak, J., Phutrakul, S., Chen, S. T., Analysis of lectin-bound glycoproteins in snake venom from the Elapidae and Viperidae families. J Proteome Res 2004, 3, 383-392.
    [14] West, C. M., Van Der Wel, H., Sassi, S., Gaucher, E. A., Cytoplasmic glycosylation of protein-hydroxyproline and its relationship to other glycosylation pathways. Biochim Biophys Acta 2004, 1673, 29-44.
    [15] Lomako, J., Lomako, W. M., Whelan, W. J., Glycogenin: the primer for mammalian and yeast glycogen synthesis. Biochim Biophys Acta 2004, 1673, 45-55.
    [16] Nagata, Y., Burger, M. M., Wheat germ agglutinin. Molecular characteristics and specificity for sugar binding. J Biol Chem 1974, 249, 3116-3122.
    [17] Tsokos, M., Anders, S., Paulsen, F., Lectin binding patterns of alveolar epithelium and subepithelial seromucous glands of the bronchi in sepsis and controls--an approach to characterize the non-specific immunological response of the human lung to sepsis. Virchows Arch 2002, 440, 181-186.
    [18] Taketa, K., Endo, Y., Sekiya, C., Tanikawa, K., et al., A collaborative study for the evaluation of lectin-reactive alpha-fetoproteins in early detection of hepatocellular carcinoma. Cancer Res 1993, 53, 5419-5423.
    [19] Aoyagi, Y., Carbohydrate-based measurements on alpha-fetoprotein in the early diagnosis of hepatocellular carcinoma. Glycoconj J 1995, 12, 194-199.
    [20] Churms, S. C., Recent progress in carbohydrate separation by high-performance liquid chromatography based on hydrophilic interaction. Journal of Chromatography A 1996, 720, 75-91.
    [21] Thaysen-Andersen, M., Thogersen, I. B., Nielsen, H. J., Lademann, U., et al., Rapid and individual-specific glycoprofiling of the low abundance N-glycosylated protein tissue inhibitor of metalloproteinases-1. Mol Cell Proteomics 2007, 6, 638-647.
    [22] Wada, Y., Tajiri, M., Yoshida, S., Hydrophilic affinity isolation and MALDI multiple-stage tandem mass spectrometry of glycopeptides for glycoproteomics. Anal Chem 2004, 76, 6560-6565.
    [23] Hagglund, P., Bunkenborg, J., Elortza, F., Jensen, O. N., Roepstorff, P., A new strategy for identification of N-glycosylated proteins and unambiguous assignment of their glycosylation sites using HILIC enrichment and partial deglycosylation. J Proteome Res 2004, 3, 556-566.
    [24] Tian, Y., Zhou, Y., Elliott, S., Aebersold, R., Zhang, H., Solid-phase extraction of N-linked glycopeptides. Nat Protoc 2007, 2, 334-339.
    [25] Chen, R., Jiang, X., Sun, D., Han, G., et al., Glycoproteomics analysis of human liver tissue by combination of multiple enzyme digestion and hydrazide chemistry. J Proteome Res 2009, 8, 651-661.
    [26] Abad, J. M., Velez, M., Santamaria, C., Guisan, J. M., et al., Immobilization of peroxidase glycoprotein on gold electrodes modified with mixed epoxy-boronic Acid monolayers. J Am Chem Soc 2002, 124, 12845-12853.
    [27] Xu, Y., Wu, Z., Zhang, L., Lu, H., et al., Highly specific enrichment of glycopeptides using boronic acid-functionalized mesoporous silica. Anal Chem 2009, 81, 503-508.
    [28] Zhou, W., Yao, N., Yao, G., Deng, C., et al., Facile synthesis of aminophenylboronic acid-functionalized magnetic nanoparticles for selective separation of glycopeptides and glycoproteins. Chem Commun (Camb) 2008, 5577-5579.
    [29] Oparin, A. I., [Problems of technical biochemistry in the field of food industry.]. Biokhimiia 1959, 24, 769-776.
    [30] KUIVILA, H. G., KEOUGH, A. H., SOBOCZENSKI, E. J., ARENEBORONATES FROM DIOLS AND POLYOLS. J. Org. Chem. 1954, 19, 780-783.
    [31] Wu, L., Han, D. K., Overcoming the dynamic range problem in mass spectrometry-based shotgun proteomics. Expert Rev Proteomics 2006, 3, 611-619.
    [32] Morelle, W., Canis, K., Chirat, F., Faid, V., Michalski, J. C., The use of mass spectrometry for the proteomic analysis of glycosylation. Proteomics 2006, 6, 3993-4015.
    [33] Narimatsu, H., Sawaki, H., Kuno, A., Kaji, H., et al., A strategy for discovery of cancer glyco-biomarkers in serum using newly developed technologies for glycoproteomics. FEBS Journal 2009, 9999.
    [34] Wang, Y., Ao, X., Vuong, H., Konanur, M., et al., Membrane glycoproteins associated with breast tumor cell progression identified by a lectin affinity approach. J Proteome Res 2008, 7, 4313-4325.
    [35] Liljeblad, M., Lundblad, A., Pahlsson, P., Analysis of glycoproteins in cell culture supernatants using a lectin immunosensor technique. Biosens Bioelectron 2002, 17, 883-891.
    [36] Picariello, G., Ferranti, P., Mamone, G., Roepstorff, P., Addeo, F., Identification of N-linked glycoproteins in human milk by hydrophilic interaction liquid chromatography and mass spectrometry. Proteomics 2008, 8, 3833-3847.
    [37] Nilsson, J., Ruetschi, U., Halim, A., Hesse, C., et al., Enrichment of glycopeptides for glycan structure and attachment site identification. Nat Methods 2009, 6, 809-811.
    [38] Tang, J., Liu, Y., Qi, D., Yao, G., et al., On-plate-selective enrichment of glycopeptides using boronic acid-modified gold nanoparticles for direct MALDI-QIT-TOF MS analysis. Proteomics 2009, 9, 5046-5055.
    [39] Lin, P. C., Chen, S. H., Wang, K. Y., Chen, M. L., et al., Fabrication of oriented antibody-conjugated magnetic nanoprobes and their immunoaffinity application. Anal Chem 2009, 81, 8774-8782.
    [40] Yezhelyev, M. V., Gao, X., Xing, Y., Al-Hajj, A., et al., Emerging use of nanoparticles in diagnosis and treatment of breast cancer. Lancet Oncol 2006, 7, 657-667.
    [41] Wang, X., Yang, L., Chen, Z. G., Shin, D. M., Application of nanotechnology in cancer therapy and imaging. CA Cancer J Clin 2008, 58, 97-110.
    [42] Lin, Y. S., Tsai, P. J., Weng, M. F., Chen, Y. C., Affinity capture using vancomycin-bound magnetic nanoparticles for the MALDI-MS analysis of bacteria. Anal Chem 2005, 77, 1753-1760.
    [43] Ho, K. C., Tsai, P. J., Lin, Y. S., Chen, Y. C., Using biofunctionalized nanoparticles to probe pathogenic bacteria. Anal Chem 2004, 76, 7162-7168.
    [44] Turney, K., Drake, T. J., Smith, J. E., Tan, W., Harrison, W. W., Functionalized nanoparticles for liquid atmospheric pressure matrix-assisted laser desorption/ionization peptide analysis. Rapid Commun Mass Spectrom 2004, 18, 2367-2374.
    [45] Lin, C. C., Yeh, Y. C., Yang, C. Y., Chen, G. F., et al., Quantitative analysis of multivalent interactions of carbohydrate-encapsulated gold nanoparticles with concanavalin A. Chem Commun (Camb) 2003, 2920-2921.
    [46] Liu, G., Mao, X., Phillips, J. A., Xu, H., et al., Aptamer?anoparticle Strip Biosensor for Sensitive Detection of Cancer Cells. Analytical Chemistry 2009.
    [47] Sinha, R., Kim, G. J., Nie, S., Shin, D. M., Nanotechnology in cancer therapeutics: bioconjugated nanoparticles for drug delivery. Mol Cancer Ther 2006, 5, 1909-1917.
    [48] Hafeli, U. O., Riffle, J. S., Harris-Shekhawat, L., Carmichael-Baranauskas, A., et al., Cell uptake and in vitro toxicity of magnetic nanoparticles suitable for drug delivery. Mol Pharm 2009, 6, 1417-1428.
    [49] Williams, P. S., Carpino, F., Zborowski, M., Magnetic nanoparticle drug carriers and their study by quadrupole magnetic field-flow fractionation. Mol Pharm 2009, 6, 1290-1306.
    [50] Nowicka, A. M., Kowalczyk, A., Donten, M., Krysinski, P., Stojek, Z., Influence of a magnetic nanoparticle as a drug carrier on the activity of anticancer drugs: interactions of double stranded DNA and doxorubicin modified with a carrier. Anal Chem 2009, 81, 7474-7483.
    [51] Chou, P. H., Chen, S. H., Liao, H. K., Lin, P. C., et al., Nanoprobe-based affinity mass spectrometry for selected protein profiling in human plasma. Anal Chem 2005, 77, 5990-5997.
    [52] Lin, P. C., Chou, P. H., Chen, S. H., Liao, H. K., et al., Ethylene glycol-protected magnetic nanoparticles for a multiplexed immunoassay in human plasma. Small 2006, 2, 485-489.
    [53] Lin, P. C., Tseng, M. C., Su, A. K., Chen, Y. J., Lin, C. C., Functionalized magnetic nanoparticles for small-molecule isolation, identification, and quantification. Anal Chem 2007, 79, 3401-3408.
    [54] Wang, K. Y., Chuang, S. A., Lin, P. C., Huang, L. S., et al., Multiplexed immunoassay: quantitation and profiling of serum biomarkers using magnetic nanoprobes and MALDI-TOF MS. Anal Chem 2008, 80, 6159-6167.
    [55] Zou, Z., Ibisate, M., Zhou, Y., Aebersold, R., et al., Synthesis and evaluation of superparamagnetic silica particles for extraction of glycopeptides in the microtiter plate format. Anal Chem 2008, 80, 1228-1234.
    [56] Zhang, L., Xu, Y., Yao, H., Xie, L., et al., Boronic acid functionalized core-satellite composite nanoparticles for advanced enrichment of glycopeptides and glycoproteins. Chemistry 2009, 15, 10158-10166.
    [57] Liu, J. C., Chen, W. J., Li, C. W., Mong, K. K., et al., Identification of Pseudomonas aeruginosa using functional magnetic nanoparticle-based affinity capture combined with MALDI MS analysis. Analyst 2009, 134, 2087-2094.
    [58] Li, Y., Jeppsson, J. O., Jornten-Karlsson, M., Linne Larsson, E., et al., Application of shielding boronate affinity chromatography in the study of the glycation pattern of haemoglobin. J Chromatogr B Analyt Technol Biomed Life Sci 2002, 776, 149-160.
    [59] Liu, S., Bakovic, L., Chen, A., Specific binding of glycoproteins with poly(aniline boronic acid) thin film. Journal of Electroanalytical Chemistry 2006, 591, 210-216.
    [60] Takatsy, A., Boddi, K., Nagy, L., Nagy, G., et al., Enrichment of Amadori products derived from the nonenzymatic glycation of proteins using microscale boronate affinity chromatography. Anal Biochem 2009, 393, 8-22.
    [61] Peng, B., Qin, Y., Lipophilic polymer membrane optical sensor with a synthetic receptor for saccharide detection. Anal Chem 2008, 80, 6137-6141.
    [62] Wuhrer, M., Hokke, C. H., Deelder, A. M., Glycopeptide analysis by matrix-assisted laser desorption/ionization tandem time-of-flight mass spectrometry reveals novel features of horseradish peroxidase glycosylation. Rapid Commun Mass Spectrom 2004, 18, 1741-1748.
    [63] Lee, B. S., Krisnanchettiar, S., Lateef, S. S., Lateef, N. S., Gupta, S., Oligosaccharide analyses of glycopeptides of horseradish peroxidase by thermal-assisted partial acid hydrolysis and mass spectrometry. Carbohydr Res 2005, 340, 1859-1865.
    [64] Yang, B. Y., Gray, J. S., Montgomery, R., The glycans of horseradish peroxidase. Carbohydr Res 1996, 287, 203-212.
    [65] Wuhrer, M., Balog, C. I., Koeleman, C. A., Deelder, A. M., Hokke, C. H., New features of site-specific horseradish peroxidase (HRP) glycosylation uncovered by nano-LC-MS with repeated ion-isolation/fragmentation cycles. Biochim Biophys Acta 2005, 1723, 229-239.
    [66] Baker, E. N., Baker, H. M., Molecular structure, binding properties and dynamics of lactoferrin. Cell Mol Life Sci 2005, 62, 2531-2539.
    [67] Lopez, M., Coddeville, B., Langridge, J., Plancke, Y., et al., Microheterogeneity of the oligosaccharides carried by the recombinant bovine lactoferrin expressed in Mamestra brassicae cells. Glycobiology 1997, 7, 635-651.
    [68] Pierce, A., Colavizza, D., Benaissa, M., Maes, P., et al., Molecular cloning and sequence analysis of bovine lactotransferrin. Eur J Biochem 1991, 196, 177-184.
    [69] Satomi, Y., Shimonishi, Y., Hase, T., Takao, T., Site-specific carbohydrate profiling of human transferrin by nano-flow liquid chromatography/electrospray ionization mass spectrometry. Rapid Commun Mass Spectrom 2004, 18, 2983-2988.
    [70] Pitchayawasin, S., Isobe, M., Mass spectrometric assignment of Smith degradation glycopeptides derived from ribonuclease B. Biosci Biotechnol Biochem 2004, 68, 1424-1433.
    [71] Solis, D., Bruix, M., Gonzalez, L., Diaz-Maurino, T., et al., Carrier protein-modulated presentation and recognition of an N-glycan: observations on the interactions of Man(8) glycoform of ribonuclease B with conglutinin. Glycobiology 2001, 11, 31-36.
    [72] Zhao, J., Fyles, T. M., James, T. D., Chiral binol-bisboronic acid as fluorescence sensor for sugar acids. Angew Chem Int Ed Engl 2004, 43, 3461-3464.
    [73] Zhao, Y., Trewyn, B. G., Slowing, II, Lin, V. S., Mesoporous silica nanoparticle-based double drug delivery system for glucose-responsive controlled release of insulin and cyclic AMP. J Am Chem Soc 2009, 131, 8398-8400.
    [74] Yan, J., Springsteen, G., Deeter, S., Wang, B., The relationship among pKa, pH, and binding constants in the interactions between boronic acids and diols--it is not as simple as it appears. Tetrahedron 2004, 60, 11205-11209.
    [75] Springsteen, G., Wang, B., A detailed examination of boronic acid-diol complexation. Tetrahedron 2002, 58, 5291-5300.
    [76] Kaji, H., Yamauchi, Y., Takahashi, N., Isobe, T., Mass spectrometric identification of N-linked glycopeptides using lectin-mediated affinity capture and glycosylation site-specific stable isotope tagging. Nat Protoc 2006, 1, 3019-3027.
    [77] Monzo, A., Bonn, G. K., Guttman, A., Boronic acid-lectin affinity chromatography. 1. Simultaneous glycoprotein binding with selective or combined elution. Anal Bioanal Chem 2007, 389, 2097-2102.
    [78] Miyoshi, E., Nakano, M., Fucosylated haptoglobin is a novel marker for pancreatic cancer: detailed analyses of oligosaccharide structures. Proteomics 2008, 8, 3257-3262.
    [79] Wuhrer, M., Koeleman, C. A., Hokke, C. H., Deelder, A. M., Protein glycosylation analyzed by normal-phase nano-liquid chromatography--mass spectrometry of glycopeptides. Anal Chem 2005, 77, 886-894.
    [80] Kubota, K., Sato, Y., Suzuki, Y., Goto-Inoue, N., et al., Analysis of glycopeptides using lectin affinity chromatography with MALDI-TOF mass spectrometry. Anal Chem 2008, 80, 3693-3698.
    [81] Wei, Z., Nishimura, T., Yoshida, S., Characterization of glycans in a lactoferrin isoform, lactoferrin-a. J Dairy Sci 2001, 84, 2584-2590.

    無法下載圖示 本全文未授權公開
    QR CODE