簡易檢索 / 詳目顯示

研究生: 于清華
Yu, Ching-Hua
論文名稱: 以顯微影像分析技術測量奈米銀與奈米銅對斑馬魚心血管功能之影響
Establishing an image-based functional analysis to investigate the effects of silver and copper nanoparticles on cardiovascular system of zebrafish embryos
指導教授: 林豊益
Lin, Li-Yih
學位類別: 碩士
Master
系所名稱: 生命科學系
Department of Life Science
論文出版年: 2018
畢業學年度: 107
語文別: 英文
論文頁數: 58
中文關鍵詞: 奈米銀奈米銅斑馬魚心血管功能
英文關鍵詞: AgNP, CuNP, zebrafish, cardiovascular system
DOI URL: http://doi.org/10.6345/THE.NTNU.SLS.001.2019.D01
論文種類: 學術論文
相關次數: 點閱:171下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 奈米材料由於其特性有別於原本的大分子型態,自二十世紀發現後至今已被廣泛用於工業上,如作為殺菌介質的奈米銀,以及用於生物、電化學感應器的奈米銅。然而,對於這些奈米材料可能帶來的環境汙染與對生物體的危害,仍缺乏完整的認識。本研究以斑馬魚的胚胎作為動物模式觀察奈米銀、奈米銅粒子的毒性。在浸泡處理四天後,觀察胚胎的死亡率、孵育率、體長的影響,並透過我們發展的高格數與高畫質顯微攝影技術,測量胚胎心血管功能的受損情形。實驗結果發現,奈米銀與奈米銅在3 ppm就會對上述生理指標有顯著的危害。在心血管功能測量上,發現奈米銀在1 ppm就會導致心輸出量的下降,而3 ppm處理會更進一步地影響心室的收縮力與心率;奈米銅則在0.1 ppm的濃度下就會引發心室體積的減少,在3 ppm處理下還會造成收縮力的下降,而這些奈米金屬引發的心室功能的下降導致了動脈血流速度減緩。綜合以上結果,我們證實了奈米銀、奈米銅對生物體不容忽視的毒性威脅;同時,也驗證了分析心血管功能的顯微攝影技術,在毒理實驗中提供了更敏感的生理指標。

    Found in the 20th century, nanoparticles have been widely used in modern industry due to its exactly different properties compared with the larger particle form of the same composition. However, there is still a lack of thorough understanding of the potential risk that these nanoparticles would bring about. In this study, we assessed the toxicity of AgNP and CuNP by immersing zebrafish embryos in AgNP- or CuNP-containing solution from 4 hr post fertilization (hpf) to 96 hpf. A significant decrease in survival rate, hatching, and body length shows the severe toxicity of AgNP and CuNP. With the application of the videomicroscopic method, which equipped microscopy with a high-frame-rate and high-resolution camera, we found that AgNP cause cardiac output decreased in 1 ppm exposure, and further induced bradycardia and decline in contractility in 3 ppm treated group; on the other hand, a significant shrinkage in ventricular volume was found in 0.1 ppm CuNP treated embryos, and contractility decreased as well in 3ppm exposure. The defects in ventricular contractility caused by two nanoparticles led to a serious decline in the flow velocity of dorsal aorta. To sum up, we suggest that AgNP and CuNP pose a serious threat to the aquatic organism. We also confirmed that this videomicroscopy approach provides a sensitive assessment of the cardiovascular function as a physiological indicator.

    致謝 3 摘要 4 Abstract 5 Introduction 6 Nanoparticles 6 Zebrafish embryos as a model of cardiovascular function assay 7 Purpose 10 Experimental Design 11 Material and Method 12 Experimental animal culture 12 Drug administration 12 Image acquisition 13 Cardiovascular function assessment 13 Analysis of vascular parameters 14 Data analysis 15 Result 16 Inhibitory effect of verapamil on zebrafish embryos’ CV function 16 The survival, hatching and body length of zebrafish embryos after AgNP or CuNP exposure 16 Effects of AgNP on CV function of the zebrafish embryos 18 Effects of CuNP on CV function of the zebrafish embryos 19 Discussion 21 Using the videomicroscopic technique to conduct a precise investigation in CV function of the teleost 21 Aquatic toxicity of AgNP in the early development of zebrafish larvae 26 Aquatic toxicity of CuNP in the early development of zebrafish larvae 30 Conclusion 32 Figure 33 Fig. 1. Assessment of the cardiac function with high-resolution video recording 33 Fig. 2. Assessment of vascular function with high temporal resolution video recording 34 Fig. 3. Effects of verapamil on the ventricular function of zebrafish embryos 36 Fig .4. Effects of verapamil on the aortic vascular function of zebrafish embryos 37 Fig. 5. Effects of AgNP and CuNP on mortality of zebrafish embryos during 96 h exposure 38 Fig. 6. Effects of AgNP and CuNP on the hatching of embryos at 72 hpf and 96 hpf 39 Fig. 7. Effects of AgNP and CuNP on the body length of zebrafish embryos 40 Fig. 8. Effects of AgNP on the ventricular function of the zebrafish embryos 42 Fig. 9. Effects of AgNP on vascular function of the zebrafish embryos 43 Fig. 10. Effects of CuNP on the ventricular function of the zebrafish embryos 45 Fig. 11. Effects of CuNP on vascular function of the zebrafish embryos 46 Fig. 12. The regression analyses between FVAVE and CO calculated from different formulae 47 Fig. 13. The regression analyses between cardiac and vascular indicators 48 Table 1. Effects of AgNP on the CV function of zebrafish embryos 49 Table 2. Effects of CuNP on the CV function of zebrafish embryos 50 References 51

    Asharani, P.V., Lian Wu, Y., Gong, Z. & Valiyaveettil, S. (2008) Toxicity of silver nanoparticles in zebrafish models. Nanotechnology, 19, 255102.

    Asharani, P.V., Lian Wu, Y., Gong, Z. & Valiyaveettil, S. (2011) Comparison of the toxicity of silver, gold and platinum nanoparticles in developing zebrafish embryos. Nanotoxicology, 5, 43-54.

    Bagatto, B. & Burggren, W. (2006) A three-dimensional functional assessment of heart and vessel development in the larva of the zebrafish (Danio rerio). Physiological and Biochemical Zoology, 79, 194-201.

    Bai, W., Tian, W., Zhang, Z., He, X., Ma, Y., Liu, N. & Chai, Z. (2010) Effects of copper nanoparticles on the development of zebrafish embryos. Journal of Nanoscience and Nanotechnology, 10, 8670-8676.

    Berghmans, S., Butler, P., Goldsmith, P., Waldron, G., Gardner, I., Golder, Z., Richards, F.M., Kimber, G., Roach, A., Alderton, W. & Fleming, A. (2008) Zebrafish based assays for the assessment of cardiac, visual and gut function--potential safety screens for early drug discovery. Journal of Pharmacological and Toxicological Methods, 58, 59-68.

    Cambier, S., Rogeberg, M., Georgantzopoulou, A., Serchi, T., Karlsson, C., Verhaegen, S., Iversen, T.G., Guignard, C., Kruszewski, M., Hoffmann, L., Audinot, J.N., Ropstad, E. & Gutleb, A.C. (2018) Fate and effects of silver nanoparticles on early life-stage development of zebrafish (Danio rerio) in comparison to silver nitrate. The Science of the Total Environment, 610-611, 972-982.

    Chen, F., Hableel, G., Zhao, E.R. & Jokerst, J.V. (2018) Multifunctional nanomedicine with silica: Role of silica in nanoparticles for theranostic, imaging, and drug monitoring. Journal of Colloid and Interface Science, 521, 261-279.

    Christensen, A.H., Chatelain, F.C., Huttner, I.G., Olesen, M.S., Soka, M., Feliciangeli, S., Horvat, C., Santiago, C.F., Vandenberg, J.I., Schmitt, N., Olesen, S.P., Lesage, F. & Fatkin, D. (2016) The two-pore domain potassium channel, TWIK-1, has a role in the regulation of heart rate and atrial size. Journal of Molecular and Cellular Cardiology, 97, 24-35.

    Cui, B., Ren, L., Xu, Q.H., Yin, L.Y., Zhou, X.Y. & Liu, J.X. (2016) Silver nanoparticles inhibited erythrogenesis during zebrafish embryogenesis. Aquatic Toxicology, 177, 295-305.

    Dankovich, T.A. & Smith, J.A. (2014) Incorporation of copper nanoparticles into paper for point-of-use water purification. Water Research, 63, 245-251.

    Davidson, B. (2007) Ciona intestinalis as a model for cardiac development. Seminars in Cell and Developmental Biology, 18, 16-26.

    DeAlba-Montero, I., Guajardo-Pacheco, J., Morales-Sanchez, E., Araujo-Martinez, R., Loredo-Becerra, G.M., Martinez-Castanon, G.A., Ruiz, F. & Compean Jasso, M.E. (2017) Antimicrobial Properties of Copper Nanoparticles and Amino Acid Chelated Copper Nanoparticles Produced by Using a Soya Extract. Bioinorganic Chemistry and Applications, 2017, 1064918.

    Duncan, T.V. (2011) Applications of nanotechnology in food packaging and food safety: barrier materials, antimicrobials and sensors. Journal of Colloid and Interface Science, 363, 1-24.

    Eryilmaz, O., Ates, P.S., Unal, I., Ustundag, U.V., Bay, S., Alturfan, A.A., Yigitbasi, T., Emekli-Alturfan, E. & Akalin, M. (2018) Evaluation of the interaction between proliferation, oxidant-antioxidant status, Wnt pathway, and apoptosis in zebrafish embryos exposed to silver nanoparticles used in textile industry. Journal of Biochemical and Molecular Toxicology, 32 (1).

    Gao, J., Mahapatra, C.T., Mapes, C.D., Khlebnikova, M., Wei, A. & Sepulveda, M.S. (2016) Vascular toxicity of silver nanoparticles to developing zebrafish (Danio rerio). Nanotoxicology, 10, 1363-1372.

    Griffitt, R.J., Weil, R., Hyndman, K.A., Denslow, N.D., Powers, K., Taylor, D. & Barber, D.S. (2007) Exposure to copper nanoparticles causes gill injury and acute lethality in zebrafish (Danio rerio). Environmental Science and Technology, 41, 8178-8186.

    Gut, P., Reischauer, S., Stainier, D.Y.R. & Arnaout, R. (2017) Little Fish, Big Data: Zebrafish as a Model for Cardiovascular and Metabolic Disease. Physiological Reviews, 97, 889-938.

    Hagenmaier, H.E. (1974) The hatching process in fish embryos : V. Characterization of the hatching protease (chorionase) from the perivitelline fluid of the rainbow trout,Salmo gairdneri rich, as a metalloenzyme. Wilhelm Roux' Archiv für Entwicklungsmechanik der Organismen, 175, 157-162.

    Heidland, A., Heidbreder, E., Horl, W.H. & Schafer, R.M. (1983) [Calcium antagonists in the therapy of hypertension]. Klin Wochenschr, 61, 633-640.

    Ho, Y.L., Shau, Y.W., Tsai, H.J., Lin, L.C., Huang, P.J. & Hsieh, F.J. (2002) Assessment of zebrafish cardiac performance using Doppler echocardiography and power angiography. Ultrasound in Medicine and Biology, 28, 1137-1143.

    Hove, J.R. (2004) In vivo biofluid dynamic imaging in the developing zebrafish. Birth Defects Research. Part C, Embryo Today : Reviews, 72, 277-289.

    Ibupoto, Z.H., Khun, K., Beni, V., Liu, X. & Willander, M. (2013) Synthesis of novel CuO nanosheets and their non-enzymatic glucose sensing applications. Sensors, 13, 7926-7938.

    Jiang, L.C. & Zhang, W.D. (2010) A highly sensitive nonenzymatic glucose sensor based on CuO nanoparticles-modified carbon nanotube electrode. Biosensors and Bioelectronics, 25, 1402-1407.

    Kim, K.H., Antkiewicz, D.S., Yan, L., Eliceiri, K.W., Heideman, W., Peterson, R.E. & Lee, Y. (2007) Lrrc10 is required for early heart development and function in zebrafish. Developmental Biology, 308, 494-506.

    Klasen, H.J. (2000) A historical review of the use of silver in the treatment of burns. II. Renewed interest for silver. Burns : Journal of the International Society for Burn Injuries, 26, 131-138.

    Langheinrich, U., Vacun, G. & Wagner, T. (2003) Zebrafish embryos express an orthologue of HERG and are sensitive toward a range of QT-prolonging drugs inducing severe arrhythmia. Toxicology and Applied Pharmacology, 193, 370-382.

    Lee, I.C., Ko, J.W., Park, S.H., Lim, J.O., Shin, I.S., Moon, C., Kim, S.H., Heo, J.D. & Kim, J.C. (2016a) Comparative toxicity and biodistribution of copper nanoparticles and cupric ions in rats. International Journal of Nanomedicine, 11, 2883-2900.

    Lee, I.C., Ko, J.W., Park, S.H., Shin, N.R., Shin, I.S., Moon, C., Kim, J.H., Kim, H.C. & Kim, J.C. (2016b) Comparative toxicity and biodistribution assessments in rats following subchronic oral exposure to copper nanoparticles and microparticles. Particle and Fibre Toxicology, 13, 56.

    Lee, K.J., Nallathamby, P.D., Browning, L.M., Osgood, C.J. & Xu, X.H. (2007) In vivo imaging of transport and biocompatibility of single silver nanoparticles in early development of zebrafish embryos. ACS Nano, 1, 133-143.

    Lin, C.X., Yang, S.Y., Gu, J.L., Meng, J., Xu, H.Y. & Cao, J.M. (2017) The acute toxic effects of silver nanoparticles on myocardial transmembrane potential, INa and IK1 channels and heart rhythm in mice. Nanotoxicology, 11, 827-837.

    Lin, K.Y., Chang, W.T., Lai, Y.C. & Liau, I. (2014) Toward functional screening of cardioactive and cardiotoxic drugs with zebrafish in vivo using pseudodynamic three-dimensional imaging. Analytical Chemistry, 86, 2213-2220.

    Malone, M.H., Sciaky, N., Stalheim, L., Hahn, K.M., Linney, E. & Johnson, G.L. (2007) Laser-scanning velocimetry: a confocal microscopy method for quantitative measurement of cardiovascular performance in zebrafish embryos and larvae. BioMed Central Biotechnology, 7, 40.

    Massarsky, A., Dupuis, L., Taylor, J., Eisa-Beygi, S., Strek, L., Trudeau, V.L. & Moon, T.W. (2013) Assessment of nanosilver toxicity during zebrafish (Danio rerio) development. Chemosphere, 92, 59-66.

    Milan, D.J., Jones, I.L., Ellinor, P.T. & MacRae, C.A. (2006) In vivo recording of adult zebrafish electrocardiogram and assessment of drug-induced QT prolongation. American journal of physiology. Heart and Circulatory Physiology, 291, H269-273.

    Milan, D.J., Peterson, T.A., Ruskin, J.N., Peterson, R.T. & MacRae, C.A. (2003) Drugs that induce repolarization abnormalities cause bradycardia in zebrafish. Circulation, 107, 1355-1358.

    Myrzakhanova, M., Gambardella, C., Falugi, C., Gatti, A.M., Tagliafierro, G., Ramoino, P., Bianchini, P. and Diaspro, A. (2013) Effects of nanosilver exposure on cholinesterase activities, CD41, and CDF/LIF-like expression in zebrafish (Danio rerio) larvae. BioMed Research International, 2013, 205183.

    Nemtsas, P., Wettwer, E., Christ, T., Weidinger, G. & Ravens, U. (2010) Adult zebrafish heart as a model for human heart? An electrophysiological study. Journal of Molecular and Cellular Cardiology, 48, 161-171.

    Orbea, A., Gonzalez-Soto, N., Lacave, J.M., Barrio, I. & Cajaraville, M.P. (2017) Developmental and reproductive toxicity of PVP/PEI-coated silver nanoparticles to zebrafish. Comparative biochemistry and physiology. Toxicology and Pharmacology, 199, 59-68.

    Ostaszewska, T., Chojnacki, M., Kamaszewski, M. & Sawosz-Chwalibog, E. (2016) Histopathological effects of silver and copper nanoparticles on the epidermis, gills, and liver of Siberian sturgeon. Environmental Science and Pollution Research, 23, 1621-1633.

    Park, K., Tuttle, G., Sinche, F. & Harper, S.L. (2013) Stability of citrate-capped silver nanoparticles in exposure media and their effects on the development of embryonic zebrafish (Danio rerio). Archives of Pharmacal Research, 36, 125-133.

    Parker, T., Libourel, P.A., Hetheridge, M.J., Cumming, R.I., Sutcliffe, T.P., Goonesinghe, A.C., Ball, J.S., Owen, S.F., Chomis, Y. & Winter, M.J. (2014) A multi-endpoint in vivo larval zebrafish (Danio rerio) model for the assessment of integrated cardiovascular function. Journal of Pharmacological and Toxicological Methods, 69, 30-38.

    Pecoraro, R., Marino, F., Salvaggio, A., Capparucci, F., Di Caro, G., Iaria, C., Salvo, A., Rotondo, A., Tibullo, D., Guerriero, G., Scalisi, E.M., Zimbone, M., Impellizzeri, G. & Brundo, M.V. (2017) Evaluation of Chronic Nanosilver Toxicity to Adult Zebrafish. Frontiers in Physiology, 8, 1011.

    Perrichon, P., Grosell, M. & Burggren, W.W. (2017) Heart Performance Determination by Visualization in Larval Fishes: Influence of Alternative Models for Heart Shape and Volume. Frontiers in Physiology, 8, 464.

    Powers, C.M., Slotkin, T.A., Seidler, F.J., Badireddy, A.R. & Padilla, S. (2011) Silver nanoparticles alter zebrafish development and larval behavior: distinct roles for particle size, coating and composition. Neurotoxicology and Teratology, 33, 708-714.

    Prisant, L.M. (2001) Verapamil revisited: a transition in novel drug delivery systems and outcomes. Heart Disease, 3, 55-62.

    Rode, A., Sharma, S. & Mishra, D.K. (2017) Carbon Nanotubes: Classification, Method of Preparation and Pharmaceutical Application. Current Drug Delivery, 15, 620-629.

    Sagawa, H., Hoshino, S., Yoshioka, K., Ding, W.G., Omatsu-Kanbe, M., Nakagawa, M., Maruo, Y. & Matsuura, H. (2018) Postnatal developmental changes in the sensitivity of L-type Ca(2+) channel to inhibition by verapamil in a mouse heart model. Pediatric Research, 83, 1207-1217.

    Sandberg, F., Corino, V.D., Mainardi, L.T., Ulimoen, S.R., Enger, S., Tveit, A., Platonov, P.G. & Sornmo, L. (2015) Non-invasive assessment of the effect of beta blockers and calcium channel blockers on the AV node during permanent atrial fibrillation. Journal of Electrocardiology, 48, 861-866.

    Sarkar, B., Verma, S.K., Akhtar, J., Netam, S.P., Gupta, S.K., Panda, P.K. & Mukherjee, K. (2018) Molecular aspect of silver nanoparticles regulated embryonic development in Zebrafish (Danio rerio) by Oct-4 expression. Chemosphere, 206, 560-567.

    Shaw, B.J., Al-Bairuty, G. & Handy, R.D. (2012) Effects of waterborne copper nanoparticles and copper sulphate on rainbow trout, (Oncorhynchus mykiss): physiology and accumulation. Aquaict Toxicology, 116-117, 90-101.

    Shin, J.T., Pomerantsev, E.V., Mably, J.D. & MacRae, C.A. (2010) High-resolution cardiovascular function confirms functional orthology of myocardial contractility pathways in zebrafish. Physiological Genomics, 42, 300-309.

    Stainier, D.Y., Fouquet, B., Chen, J.N., Warren, K.S., Weinstein, B.M., Meiler, S.E., Mohideen, M.A., Neuhauss, S.C., Solnica-Krezel, L., Schier, A.F., Zwartkruis, F., Stemple, D.L., Malicki, J., Driever, W. & Fishman, M.C. (1996) Mutations affecting the formation and function of the cardiovascular system in the zebrafish embryo. Development, 123, 285-292.

    Staudt, D. & Stainier, D. (2012) Uncovering the molecular and cellular mechanisms of heart development using the zebrafish. Annual review of genetics, 46, 397-418.

    Tilton, F.A., Bammler, T.K. & Gallagher, E.P. (2011) Swimming impairment and acetylcholinesterase inhibition in zebrafish exposed to copper or chlorpyrifos separately, or as mixtures. Comparative biochemistry and physiology. Toxicology and pharmacology, 153, 9-16.

    Vance, M.E., Kuiken, T., Vejerano, E.P., McGinnis, S.P., Hochella, M.F., Jr., Rejeski, D. & Hull, M.S. (2015) Nanotechnology in the real world: Redeveloping the nanomaterial consumer products inventory. Beilstein Journal of Nanotechnology, 6, 1769-1780.

    Verkerk, A.O. & Remme, C.A. (2012) Zebrafish: a novel research tool for cardiac (patho)electrophysiology and ion channel disorders. Frontiers in Physiology, 3, 255.

    Wu, Y. & Zhou, Q. (2012) Dose- and time-related changes in aerobic metabolism, chorionic disruption, and oxidative stress in embryonic medaka (Oryzias latipes): underlying mechanisms for silver nanoparticle developmental toxicity. Aquatic Toxicology, 124-125, 238-246.

    Wu, Y., Zhou, Q., Li, H., Liu, W., Wang, T. & Jiang, G. (2010) Effects of silver nanoparticles on the development and histopathology biomarkers of Japanese medaka (Oryzias latipes) using the partial-life test. Aquatic Toxicology, 100, 160-167.

    Xin, Q., Rotchell, J.M., Cheng, J., Yi, J. & Zhang, Q. (2015) Silver nanoparticles affect the neural development of zebrafish embryos. Journal of Applied Toxicology : JAT, 35, 1481-1492.

    Xu, J., Zhang, R., Zhang, T., Zhao, G., Huang, Y., Wang, H. & Liu, J.X. (2017) Copper impairs zebrafish swimbladder development by down-regulating Wnt signaling. Aquatic Toxicology, 192, 155-164.

    Xu, Q.H., Guan, P., Zhang, T., Lu, C., Li, G. & Liu, J.X. (2018) Silver nanoparticles impair zebrafish skeletal and cardiac myofibrillogenesis and sarcomere formation. Aquatic Toxicology, 200, 102-113.

    Yang, J., Hu, S., Rao, M., Hu, L., Lei, H., Wu, Y., Wang, Y., Ke, D., Xia, W. & Zhu, C.H. (2017) Copper nanoparticle-induced ovarian injury, follicular atresia, apoptosis, and gene expression alterations in female rats. International Journal of Nanomedicine, 12, 5959-5971.

    Zhu, X.Y., Wu, S.Q., Guo, S.Y., Yang, H., Xia, B., Li, P. & Li, C.Q. (2018) A zebrafish heart failure model for assessing therapeutic agents. Zebrafish, 15, 243-253.

    無法下載圖示 本全文未授權公開
    QR CODE