簡易檢索 / 詳目顯示

研究生: 葉懿嫻
YEH I-HSHEN
論文名稱: 花蓮溪縱谷段土石流扇判釋與流域特徵分析
Interpretation of the debris flow fans and analysis of the basin characteristics, the Longitudinal Valley section of the Hualien Stream
指導教授: 沈淑敏
學位類別: 碩士
Master
系所名稱: 地理學系
Department of Geography
論文出版年: 2006
畢業學年度: 94
語文別: 中文
論文頁數: 106
中文關鍵詞: 沖積扇土石流扇數值航測系統花蓮溪相關分析單因子變異數分析獨立T樣本分析判別分析
英文關鍵詞: alluvial fan, debris flow fan, digital aerial photography, Hualien Stream, correlate analysis, one- way ANOVA, T simple, Hualien Stindependent T simple test, discriminate analysis
論文種類: 學術論文
相關次數: 點閱:251下載:52
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 台灣為一個易發生土石流的環境,為有效減少土石流災害的發生,找出具有土石流發生體質的溪流為重要的第一步。水土保持局根據一套作業系統判釋全台的土石流潛勢溪流。而以地形的觀點出發,以土石堆積所造成的谷口土石流扇,為土石流發生過的地形證據,可以作為判別土石流是否發生的證據。而若能確定谷口的沖積扇是土石流作用造成的土石流扇,則可判定該溪流是具有土石流發生的體質。本文主要的目的為利用土石流扇尋找具有土石流發生體質的溪流,並用統計分析歸納出土石流扇的流域特徵,作為判釋土石流潛勢溪流的指標。
    本研究以花蓮溪縱谷段為研究區,利用數值航測系統輔以等高線地形圖判釋研究區中38個沖積扇,再以沖積扇的形態特徵為主,土石流發生史為輔,初步分出其中4個洪水扇、4個土石洪水扇和30個土石流扇。後經流域計測分析修正為4個洪水扇、3個土石洪水扇和31個土石流扇。
    本研究利用統計分析尋找不同主導營力之扇和有無土石流扇的判別因子。結果顯示流域長度、流域面積結合起伏比兩者為區分不同主導營力之沖積扇(包括洪水扇、土石流扇和土石洪水扇)的最佳因子,流域河床坡度和流域險峻值可區分洪水扇和土石流扇。另一方面,有效集水面積和形狀係數可區分無扇流域,但無法有效判別出有扇流域,因此人工判釋土石流扇仍有其必要性。歸納本研究區土石流扇的流域特性為流域長度<4.2公里,流域面積<1200公頃,起伏比>0.4,流域河床坡度>22%,流域險峻值>0.5。
    最後將本研究所判釋的土石流扇與水土保持局所判定的土石流潛勢溪流相比,對本區而言,水土保持局已判定出大多數可能再發生土石流的溪溝,但水土保持局可能因為使用圖資上的限制,或將「下游保全對象」當作必要條件,忽略一些具有土石流發生體質的溪流。本研究利用數值航測系統所成的立體像對判釋土石流扇,在使用的圖資方面較為精細。另本研究認為從預防不當開發的角度出發,溪流的下游即使現無保全對象,將來也可能因開發而造成災害,因此仍須加以注意。將土石流扇和土石流潛勢溪流相較結果顯示在本研究區中還有6條具有土石流發生體質的溪溝未被劃入土石流潛勢溪流中,而土石流扇可以作為一種指標地形,用以檢查或補充水土保持局劃定的潛勢溪流。

    For mitigating the debris flow hazards, 1420 streams around Taiwan island have been classified as the potential debris flow torrents, based on the channel gradient, effective basin size and the presence of protected targets. It is not certain, however, whether the identified streams are inclusive when only based on the criteria listed above. Thus, this research proposed to adopt the characteristic landform, i.e., debris flow fan as the supplementary indicator. The tributaries in the western side of the Hualien Stream in the Longitudinal Valley was chosen as the study area for their well-developed alluvial fans.
    Firstly, all tributary valley mouths were examined and 38 alluvial fans interpreted were digitized by using digital aerial photography. Among them, 30 debris flow fans were preliminarily classified based on their morphological parameters (fan area and fan channel slope) due to the lackness of fan deposit outcrops. Catchment morphological characteristics of all tributaries, then, were used to differentiate debris flow fans from the rest with the Discriminative Analysis. Among morphological parameters, catchment length, catchment area together with relief ratio, channel slope, basin roughness number justified 31 debris flow fans from 38 fans. Finally, the potential debris flow torrents without debris flow fans and the non- potential debris flow torrents with fans were discussed. It is suggested that six torrents should be added onto the list of the potential debris flow torrents.
    This research shows when properly examined with stereo pairs of aerial photographs, the debris flow fan could be a good supplementary tool to catchment morphological parameters on identifying potential debris flow torrents.

    目次 第一章 緒論 1. 研究動機與目的 1 2. 文獻探討 4 3. 研究方法 11 4. 研究區概況 20 第二章 花蓮溪縱谷段沖積扇特徵與類型之認定 1. 沖積扇面積和坡度特徵 23 2. 沖積扇沈積物特徵 27 3. 沖積扇類型的認定 30 4. 小結 34 第三章 沖積扇流域特徵之分析 35 1. 不同主導營力之沖積扇的流域特徵和判別因子 37 2. 土石流扇和無土石流扇的流域特性和判別因子 47 3. 小結 51 第四章 討論 1. 不同圖資判釋沖積扇的比較 53 2. 沖積扇面積和流域面積的關係 57 3. 判別分析結果的討論 60 4. 土石流潛勢溪流和土石流扇 64 第五章 結論與建議 71 參考文獻 73 附錄1 本研究使用各項圖資整理表 附錄2 沖積扇和流域各項變數整理表 附錄3各項統計分析原始檔 附錄4中央山脈側沖積扇與土石流潛勢溪流關係表 77 79 89 98

    中央地質調查所(2004) 92年土石流災害地質調查研究計畫。
    台灣省文獻委員會(1996) 重修台灣省通志卷二土地志地形篇。
    行政院農業委員會水土保持局(1996) 台灣地區土石流危險溪流地圖集。
    行政院農委會水土保持局(2001) 桃芝颱風災區土石流災害潛勢分析。
    行政院農委會水土保持局(2003) 土石流潛勢溪流後續調查與演變趨勢觀測成果報告書。
    李錦發、魏正岳、林明旻、黃健政(2004) 數值航測應用山崩調查-以紅菜坪地滑為例,第四屆海峽兩岸山地災害與環境保育學術研討會論文集,661-670。
    沈淑敏、張瑞津、葉懿嫻、劉盈劭(2005) 指標性地形特徵與潛在土石流危險溪流的判定(I),國家科學委員會補助專題研究計畫成果報告書,NSC 93-2625-Z-003-002。
    花蓮溪政府(2004) 92年度花蓮溪土石流災害應變系統建置計畫-土石流潛勢溪流疏散路線、避難區規劃可行性評估成果報告書。
    施邦築、鄭光炎(1997) 土石流危險溪流之研究,台北技術學院學報,31,117-131。
    張東炯、謝正倫(1996) 東部蘭陽地區土石流現場調查分析,中華水土保持學報,27(2),139-150。
    張東炯、謝正倫(1997) 中部地區土石流現場調查與分析,農業工程學報,43(3),31-46。
    張東炯(1998) 台灣北部地區潛勢土石流現場調查與分析,農業工程學報,44(3),51-63。
    陳紫娥(2000) 花蓮溪河谷沖積扇之自然環境、土地利用及其土石災害之研究,國立台灣大學地理學系地理學報,27,55-70。
    陳紫娥(2002) 卑南溪河谷沖積扇之自然環境、土地利用與土石災害之研究,地理學報,32,89-104。
    張瑞津等(1994) 花東縱谷沖積扇的地形學研究,師大地理研究報告,21,43-74。
    張瑞津(1997) 台灣沖積扇之分布、形態及地形意義,地質,17(1-2),69-93。
    張健邦(1997) 多變量分析,三民書局。
    富田芳郎(1972) 台灣地形發展史,古今書院。
    游繁結、連惠邦(1999) 土石流扇狀地危險區劃定之評述,地工技術,74,57-66。
    楊淑君(1996) 台灣沖積扇之地形學研究,台灣師範大學地理研究所博士論文。
    楊世瑩(2005) SPSS統計分析實務,旗標圖書股份有限公司。
    詹錢登(2000) 土石流概論,科技圖書股份有限公司。
    詹仕堅、孫志鴻(2000) 網格式數值高程模型擷取河系集流閾值之探討,地理學報,28,27-45。
    經濟部中央地質調查所(2003) 台灣1: 250000地質圖數值檔。
    蔡元芳、謝正倫、蔡懷寬(2002) 土石流危險範圍之劃定,力學系列B,18(2)91-101。
    顏月珠(1989) 統計學,三民書局。
    謝正倫、陳禮仁(1993),土石流潛在溪流之危險度的評估方法,中華水土保持學報,24(1),13-19。
    謝正倫、蔡元芳(1998) 土石流扇狀地之三維堆積地形,中國土木水利工程學刊,10(4),719-730。
    行政院農委會水土保持局網站 http://www.swcb.gov.tw/Newpage/index.htm
    中央氣象局網站 http://www.cwb.gov.tw/index.htm
    Blair, T. C. (1999) Cause of dominance by sheetflood vs. debris-flow processes on two adjoining alluvial fans, Death Valley, California, Sedimentology, 46, 1015-1028.
    Blissenbach, E. (1954) Geology of alluvial fan in semiarid regions, Geological Society of America Bulletin, 65,175-190.
    Bovis, M. J. and Jakob, M. (1999) The role of debris supply conditions in predicting debris flow activity, Earth Surface Processes and Landforms, 24, 1039–1054.
    Boyer, D. (2001) Risk assessment procedure for proposed resource development activities above alluvial and debris torrent fans, Terrain Stability and Forest Management in the Interior of British Columbia: Workshop Proceedings, 144-155.
    Bull, W. B. (1964) Geomorphology of segmented alluvial fan in western Fresno Country, California, United States Geological Survey Professional Paper, 352, 89-129.
    Bull, W.B. (1977) The alluvial fan-environment, Progress in Physical Geography, 1, 22–270.
    Church, M. A. and Mark, D. M. (1980) On size and scale in geomorphology, Process in Physical Geography, 4, 342-390.
    Coe, J.A., Godt, J.W., Parise, M. ,and Moscariello, A. (2003) Estimating debris-flow probability using fan stratigraphy, historic records, and drainage basin morphology, Interstate 70 Highway Corridor, Central Colorado, Third International Conference On Debris-Flow Hazards Mitigation: Mechanics, Prediction, and Assessment, Davos, Switzerland.
    Costa, J.E. (1988) Rheologic, geomorphic, and sedimentologic differentiation of water floods, hyperconcentrated flows, and debris flows. In: Baker, V.R., Kochel RC, Patton, P.C. (eds) Flood geomorphology, Wiley, New York.
    Crosta, G.B. and Frattini, P. (2004) Controls on modern alluvial fan processes in the central Alps, northern Italy, Earth Surface Processes and Landforms, 29, 3, 267 – 293.
    Drew, F. (1873) Alluvial and lacustrine deposits and glacial records of the upper- Indus Basin, Quarterly Jour. Geol. Soc. London, 29,441-471.
    Goudie, A.S. (2004) Encyclopedia of Geomorphology, London; New York: Routledge.
    Harvey A. M. (1992) The influence of sedimentary style on the morphology and development of alluvial fans, Israel Journal of Earth Sciences, 41, 123–137.
    Harvey, A.M., Silva, P.G, Mather, A.E., Goy, J.L., Stokes, M., and Zazo, C. (1999) The impact of Quaternary sea-level and climatic change on coastal alluvial fans in the Cabo de Gata ranges, southeast Spain, Geomorphology, 28, 1–22.
    Kochel, R. C. (1990) Humid fans of the Appalachian Mountain, In: Rachocki, A. H. and Church, M. (eds.) Alluvial fan: a field approach, Wiley, Chichester, 3-26.
    Jackson, L.E., Kostaschuk, R.A. and MacDonald, G.M. (1987) Identification of debris flow hazard on alluvial fans in the Canadian Rocky Mountains. In J.E. Costa & G.F. Wieczorek (eds), Debris Flows/Avalanches: Process, Recognition, and Mitigation, Geological Society of America, Reviews in Engineering Geology, 7 , 115-124.
    Kostaschuk, R.A., Macdonald, G.M. and Putnam, P.E. (1986) Depositional process and alluvial fan- drainage basin morphometrics relationships near Banff, Alberta, Canada’ Earth Surface Processes and Landforms, 11, 471-484.
    Kostaschuk, R.A., Macdonald, G.M. and Jackson, Jr., L.E. (1987) Rocky Mountain alluvial fans, The Canadian Geographer, 31(4), 366-368.
    Lecce, S.A. (1990) The alluvial fan problem, In: Rachocki, A. H. and Church, M. (eds.) Alluvial fan: a field approach, Wiley, Chichester, 3-26.
    Melton, M.A. (1957) An analysis of the relation among elements of climate, surface properties and geomorphology, Technical Report ,11, Project NR, 389-042, Office of Naval Research, Columbia University.
    Melton, M.A. (1965) The geomorphic and paleoclimatic significance of alluvial deposits on southern Arizona. Journal of Geology, 73, 1-38.
    Patton, P.C. and Baker, V.R. (1976) Morphometry and floods in small drainage basins subject to diverse hydrogeomorphic controls, Water Resources Research , 12, 941–952.
    Patton, P.C. (1988) Drainage basin morphometry and floods. In: Baker, V.R., Kochel, R.C., Patton PC (eds) Flood geomorphology. Wiley, New York.
    Powers, M.C. (1953) A new roundness scale for sedimentary particles, Journal of Sedimentary Petrology, 23, 118.
    Scally, F. A.D. and Owens, I. F. (2004) Morphometric controls and geomorphic responses on fans in the Southern Alps, New Zealand, Earth surface processes and landforms, 29, 311-322
    Sorriso-Valvo, M., Antronico, L. and La Pera, E. (1998) Controls on fan morphology in Calabria, southern Italy, Geomorphology, 24, 169–187.
    Stanistreet, I.G., and Mccarthy, T.S. (1993) The Okavango Fan and the classification of subaerial fan systems, Sedimentary Geology, 85,115-133.
    Strahler, A.N. (1952) Hypsometric (area-altitude) analysis of erosional topography. Geological Society of America Bulletin, 63, 1117–1142.
    Wilford, D.J., Sakals, M.E., Innes, J. L., Sidle, R. C., Bergerud, W. A. (2004) Recognition of debris flow, debris flood and flood hazard through watershed morphometrics, Landslides, 1, 61-66.

    QR CODE