研究生: |
陳萬暉 Wan-Huei Chen |
---|---|
論文名稱: |
石墨烯場效電晶體製作及特性研究 Fabrication and Characterization of Graphene Field-Effect Transistors |
指導教授: |
胡淑芬
Hu, Shu-Fen |
學位類別: |
碩士 Master |
系所名稱: |
物理學系 Department of Physics |
論文出版年: | 2013 |
畢業學年度: | 101 |
語文別: | 中文 |
論文頁數: | 86 |
中文關鍵詞: | 化學氣相沉積法 、石墨烯 、電晶體 |
英文關鍵詞: | CVD, graphene, transistors |
論文種類: | 學術論文 |
相關次數: | 點閱:335 下載:0 |
分享至: |
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
現今科技發展日新月異,一日千里,電晶體製程逐漸縮小化,且根據「摩爾定律」,於未來2020年閘極製程長度預估為7.4 nm,而首當其衝之問題則為矽製程之物理極限,因此必須尋找新穎材料代替矽,近年來對於下一世代半導體研究主題如:奈米碳管(Cabon Nanotube)、奈米線(Nanowires)與石墨烯等等。因石墨烯具有高電子遷移率、良好熱導率與準二維結構之優異特性,故本實驗將選擇石墨烯作為代替矽之新興材料。
因單層石墨烯為零能隙材料,故本實驗為利用化學氣相沉積法製備少層石墨烯,並藉由TRT轉印至基板,並利用諸多儀器測量其特性,而本實驗所製備之石墨烯其透明度為91.5%、片電阻為2.62 ± 0.48 kΩ/sq、2D/G為0.81與D/G為0.09。
有別於其它文獻,本實驗將石墨烯應用於場效電晶體,所利用方式為金屬光罩加上脈衝雷射蝕刻,其製作方式簡單、速度快且成本花費低廉,最後再將石墨烯場效電晶體量測其電性。
Science and technology are advancing with each passing day, transistor process progressively miniaturization. According to "Moore's Law", transistor gate length will estimate about 7.4 nm in 2020. Silicon material will bear the brunt of problem of physical limitations. Therefore, we must find a new materials instead of silicon. In recent years, the next generation of semiconductors have some researches topics. For example, cabon nanotube、nanowires and graphene etc. Because graphene has excellent characteristics of high electron mobility, good thermal conductivity and quasi-two-dimensional structure, our study selected graphene to substitute silicon and hope it to solving the problem.
Because monolayer graphene is zero band gap materials, our study was prepared few layer graphene via chemical vapor deposition, and transferred to any substrate by TRT. Finally, using many instruments measure its characteristics. In this study, the graphene we prepared was 91.5% of the transparency, sheet resistance was 2.62 ± 0.48 kΩ/sq, 2D/G = 0.81 and the D/G = 0.09.
Different from other references, we used metal mask add pulse laser to pattern graphene channel, and applied to field-effect transistors. It’s a simple, easy and low cost method to fabricate graphene field-effect transistors. Finally, graphene field-effect transistors measured by semiconductor device parameter analyzer.
1. Apple product history, http://ideapit.net/p4648.html.
2. Intel, Intel Agreements with ASML (2012).
3. Nobelprize.org, http://www.nobelprize.org/nobel_prizes/physics/laureates/2010/ (2010).
4. N David Mermin, Physical Review 176 (1), 250 (1968).
5. A. C. Neto, F. Guinea, and N. M. R. Peres, Phys. World 19 (11), 33 (2006).
6. J. C. Meyer, A. K. Geim, M. I. Katsnelson, K. S. Novoselov, T. J. Booth, and S. Roth, Nature 446 (7131), 60 (2007).
7. P. Koskinen, S. Malola, and H. Hakkinen, Phys. Rev. Lett. 101 (11) (2008).
8. K. S. Novoselov, Z. Jiang, Y. Zhang, S. V. Morozov, H. L. Stormer, U. Zeitler, J. C. Maan, G. S. Boebinger, P. Kim, and A. K. Geim, Science 315 (5817), 1379 (2007).
9. A. H. Castro Neto, F. Guinea, N. M. R. Peres, K. S. Novoselov, and A. K. Geim, Rev. Mod. Phys. 81 (1), 109 (2009).
10. J. B. Oostinga, H. B. Heersche, X. L. Liu, A. F. Morpurgo, and L. M. K. Vandersypen, Nat. Mater. 7 (2), 151 (2008).
11. A. A. Balandin, S. Ghosh, W. Z. Bao, I. Calizo, D. Teweldebrhan, F. Miao, and C. N. Lau, Nano Lett. 8 (3), 902 (2008).
12. A. K. Geim and K. S. Novoselov, Nat. Mater. 6 (3), 183 (2007).
13. Web of Knowledge, http://portal.isiknowledge.com/.
14. K. S. Novoselov, A. K. Geim, S. V. Morozov, D. Jiang, Y. Zhang, S. V. Dubonos, I. V. Grigorieva, and A. A. Firsov, Science 306 (5696), 666 (2004).
15. M. Y. Han, Electronic Transport in Graphene Nanoribbons (2010).
16. C. Berger, Z. M. Song, X. B. Li, X. S. Wu, N. Brown, C. Naud, D. Mayou, T. B. Li, J. Hass, A. N. Marchenkov, E. H. Conrad, P. N. First, and W. A. de Heer, Science 312 (5777), 1191 (2006).
17. V. Singh, D. Joung, L. Zhai, S. Das, S. I. Khondaker, and S. Seal, Prog. Mater. Sci. 56 (8), 1178 (2011).
18. V. C. Tung, M. J. Allen, Y. Yang, and R. B. Kaner, Nat. Nanotechnol. 4 (1), 25 (2009).
19. S. Bae, H. Kim, Y. Lee, X. F. Xu, J. S. Park, Y. Zheng, J. Balakrishnan, T. Lei, H. R. Kim, Y. I. Song, Y. J. Kim, K. S. Kim, B. Ozyilmaz, J. H. Ahn, B. H. Hong, and S. Iijima, Nat. Nanotechnol. 5 (8), 574 (2010).
20. F. Schwierz, Nat. Nanotechnol. 5 (7), 487 (2010).
21. P. K. Ang, W. Chen, A. T. S. Wee, and K. P. Loh, J. Am. Chem. Soc. 130 (44), 14392 (2008).
22. L. Liao, Y. C. Lin, M. Q. Bao, R. Cheng, J. W. Bai, Y. A. Liu, Y. Q. Qu, K. L. Wang, Y. Huang, and X. F. Duan, Nature 467 (7313), 305 (2010).
23. Y. Y. Lee, K. H. Tu, C. C. Yu, S. S. Li, J. Y. Hwang, C. C. Lin, K. H. Chen, L. C. Chen, H. L. Chen, and C. W. Chen, ACS Nano 5 (8), 6564 (2011).
24. X. C. Miao, S. Tongay, M. K. Petterson, K. Berke, A. G. Rinzler, B. R. Appleton, and A. F. Hebard, Nano Lett. 12 (6), 2745 (2012).
25. T. J. Echtermeyer, M. C. Lemme, J. Bolten, M. Baus, M. Ramsteiner, and H. Kurz, Eur. Phys. J.-Spec. Top. 148, 19 (2007).
26. X. S. Li, W. W. Cai, J. H. An, S. Kim, J. Nah, D. X. Yang, R. Piner, A. Velamakanni, I. Jung, E. Tutuc, S. K. Banerjee, L. Colombo, and R. S. Ruoff, Science 324 (5932), 1312 (2009).
27. F. N. Xia, D. B. Farmer, Y. M. Lin, and P. Avouris, Nano Lett. 10 (2), 715 (2010).
28. P. H. Ho, Y. C. Yeh, D. Y. Wang, S. S. Li, H. A. Chen, Y. H. Chung, C. C. Lin, W. H. Wang, and C. W. Chen, ACS Nano 6 (7), 6215 (2012).
29. S. S. Chen, H. X. Ji, H. Chou, Q. Y. Li, H. Y. Li, J. W. Suk, R. Piner, L. Liao, W. W. Cai, and R. S. Ruoff, Advanced Materials 25 (14), 2062 (2013).
30. MTDATA – Phase Diagram Software from the National Physical Laboratory, http://resource.npl.co.uk/mtdata/phdiagrams/ccu.htm (2010).
31. NITTO DENKO, http://www.semicorp.com/brochures/Revalpha%20Info%20Ver%20B.pdf.
32. D. P. Tsai, 奈米檢測技術 (2009).
33. R. R. Nair, P. Blake, A. N. Grigorenko, K. S. Novoselov, T. J. Booth, T. Stauber, N. M. R. Peres, and A. K. Geim, Science 320 (5881), 1308 (2008).