簡易檢索 / 詳目顯示

研究生: 沈桂淑
Kuei-Shu Shen
論文名稱: 中國貴州晚古生代碳酸鹽岩碳同位素地層記錄之意義
Late Paleozoic Carbon Isotope Stratigraphy Records of Carbonate Rocks from Guizhou, South China
指導教授: 米泓生
Mii, Horng-Sheng
學位類別: 碩士
Master
系所名稱: 地球科學系
Department of Earth Sciences
論文出版年: 2014
畢業學年度: 102
語文別: 中文
論文頁數: 121
中文關鍵詞: 晚古生代碳酸鹽岩碳同位素地層
英文關鍵詞: Late Paleozoic, carbonate rocks, carbon isotope stratigraphy
論文種類: 學術論文
相關次數: 點閱:120下載:18
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本研究分析採自貴州(華南)晚古生代納水剖面、羅悃剖面、納嬈剖面1134個碳酸鹽岩標本的碳、氧穩定同位素成份,以探討同一海盆但不同地點、不同沉積環境間進行碳同位素地層的比對,並用以探討其意義重建古環境。
    根據牙形刺生物地層,納水剖面年代包括中石炭紀、中二疊紀;羅悃剖面年代涵蓋中、晚石炭紀;納嬈剖面所涵蓋的年代為中石炭紀到中二疊紀。納水剖面,δ18O數值介於-13.3~-1.1‰ (平均值為-5.6±2.4‰,N=246); δ13C數值介於-1.1~5.5‰ (平均值為3.2±1.3‰,N=246)。羅悃剖面,δ18O數值介於-9.7~-1.4‰ (平均值為-5.2±1.7‰,N=191);δ13C數值介於-3.0~5.0‰ (平均值為2.3±1.4‰,N=191)。納嬈剖面,δ18O數值介於-12.9~3.8‰ (平均值為-4.6±1.7‰,N=583);δ13C數值介於-0.4~6.4‰ (平均值為3.6±1.2‰,N=583)。
    研究結果顯示深色碳酸鹽岩(深水相)較其他淺色碳酸鹽岩(淺水相)的碳、氧同位素數值分別重0~2‰、0.1~4.5‰;相較於深水相的沉積環境,淺水相碳酸鹽岩的碳同位素組成變化幅度較大;因此,推論沉積環境的不同或者改變,會造成碳同位素地層對比上組成變化幅度的落差,但整體變化趨勢是一樣的。
    在本研究與中國、全球的碳同位素紀錄變化趨勢與幅度大致相同,平均δ13C數值從Visean和Serpukhovian的2~3‰開始增加,在Gzhelian - Asselian之間,δ13C數值達到最大值,為一個明顯的正偏移事件,造成此δ13C正偏移事件,可能與在Gzhelian–Asselian冰川範圍達到最大程度有關。二疊紀,中國華南與北美洲同時Asselian開始δ13C數值往負偏移,是由於冰期開始萎縮所造成的。在Kungurian時期中國華南與北美洲的δ13C數值都有先往負偏移再往正偏移的變化,而正偏移時與Fielding等人(2008)認為冰期發展時的時間相近,顯示此正偏移與冰期有關,但低緯度與Urals的δ13C數值變化趨勢則剛好相反。在Roadian、Wordian、Capitanian時期中國華南、低緯度地區與北美洲的δ13C數值正偏移與冰期發育的時期一致。
    本研究結果顯示不論是深水相或淺水相的碳酸鹽岩,其碳酸鹽碳穩定同位素分析值的正偏移,都可以對比其他地區的,應可反映有機碳的大量埋藏、冰川的擴張或縮減,並且可以用來作為輔佐地層對比的工具。

    Stable carbon and oxygen isotope compositions of 1,134 carbonate rock samples, collected from Late Paleozoic Nashui section, Luokun section and Narao section, Guizhou (South China) were analyzed to explore the possibility of stratigraphic correlation using carbon isotope records and to estimate the extent of the variation in isotope records between shallow water and deep water environments of the same basin.
    Conodont biostratigraphy data was provided by Nanjing Institute of Geology and Palaeontology. Average stable carbon and oxygen isotope of Nashui section (N = 246; middle Carboniferous and middle Permian) are 3.2±1.3‰ and -5.6±2.4‰, respectively. Average stable carbon and oxygen isotope of Luokun section (N = 191; middle to late Carboniferous) are 2.3±1.4‰ and -5.2±1.7‰, respectively. Average stable carbon and oxygen isotope of Narao section (N = 583; middle Carboniferous to Permian) are 3.6±1.2‰ and -4.6±1.7‰, respectively. Carbon and oxygen isotope values of dark- colored carbonates (deep-water) are greater than those of light-colored carbonate rocks (shallow water) 0 ~ 2 ‰ and 0.1 ~ 4.5 ‰, respectively.
    Trends and magnitude of the carbon isotope stratigraphy among this study and those of China, North America, and Europe are comparable. Mean δ13C value increases from 2 ~ 3 ‰ during the Visean and Serpukhovian to Gzhelian – Asselian boundary, reaches the maximum. This positive δ13C excursion may be related to the expansion of continental ice volume. In Permian, the δ13C value declined during the Asselian in the South China and North America, potentially coincided with the shrinking of the Carboniferous – Permian ice sheet. In Kungurian period δ13C values of the South China and North America decreased first then increased again. This positive excursion may also be related to the development of ice volume. However, δ13C record at low latitudes (Urals) was opposite to those of South China and North America for Kungurian. In the Roadian, Wordian, Capitanian, δ13C values positive excursion of this study, consisted with the glacial record, coincided with δ13C records of South China, low latitudes, and North America.
    This study shows that carbonate rock stable carbon isotope stratigraphy records can be used for stratigraphic correlation with biostratigraphic controls. Positive excursion of δ13C records from both deep water and shallow water sections can be correlated globally and are consistent with the ice volume records.

    摘要……………………...……………………...…..........................................iv Abstract……………………………………………………………………......vi 誌謝………………………….……….....................……...............................viii 目錄…………………………………................................................................x 圖目……………………………….…............................................................xiii 表目................................................................................................................xvii 第一章、緒論……………………………………,………………………...…1 1.1前言...………………………………….………………….………..1 1.2穩定碳、氧同位素的研究與應用…..…………………….……....1 1.3前人研究……………………………..…………………………….6 1.3.1古氣候與古環境………………….…………………………...6 1.3.2碳酸鹽岩穩定碳同位素之相關研究….……………………...8 1.3.2.1穩定碳同位素與有機碳埋藏相關研究…..……………9 1.3.2.2穩定碳同位素與海洋環流相關研究……………..…..11 1.3.2.3穩定碳同位素與沉積環境相關研究……………..…..12 1.4研究目的…………………………………………………….…….15 第二章、研究區域及標本…………………………………………….……..17 2.1研究區域……………………………………………………....…..17 2.2貴州省晚古生代區域地質……………………………..…………18 2.2.1貴州省石炭系………………………………………………...20 2.2.2貴州省二疊系.…………….………………………………….21 2.3貴州省古地理概況………………………………………………..22 2.4標本採集剖面描述………………………………………………..22 2.4.1納水剖面(Nashui section)…………………………………….22 2.4.2羅悃剖面(Luokun section)……………………………………24 2.4.3納嬈剖面(Narao section)……………………………………..24 第三章、研究方法……………………………………………………………25 3.1標本採集…………………………………………………………..25 3.2岩石標本前處理…………………………………………………..26 3.3岩石薄片製作……………………………………………………..26 3.4顯微鏡下透射光、反射光及陰極射線觀察……………………..26 3.5偏光顯微鏡………………………………………………………..27 3.6穩定碳氧同位素分析……………………………………………..27 3.7X光繞射儀分析(XRD)……………………………………………28 3.8年代的建立………………………………………………………..28 第四章、結果與討論………………………………………………………...30 4.1標本保存度………………………………………………………..30 4.1.1由穩定碳、氧同位素分析結果探討標本保存度……………30 4.1.2偏光顯微鏡、透射光及陰極射線觀察結果…………………38 4.1.3碳酸鹽岩岩石顏色與穩定碳氧同位素關係………………...46 4.2穩定碳同位素結果………………………………………………..49 4.2.1納嬈剖面……………………………………………………...49 4.2.2納水剖面……………………………………………………...52 4.2.3羅悃剖面……………………………………………………...54 4.3X光繞射儀(XRD)分析結果……………………………………....56 4.4碳同位素地層對比………………………………………………..59 4.4.1中國貴州碳同位素地層對比………………………………...59 4.4.2華南地區碳同位素地層對比………………………………...64 4.4.3全球碳同位素地層對比……………………………………...68 第五章、結論………………………………………………………………...71 參考文獻………………………………………………….…………………..72 附錄一、中國貴州納水剖面碳酸鹽岩穩定碳氧同位素……………………86 附錄二、中國貴州羅悃剖面碳酸鹽岩穩定碳氧同位素……………………94 附錄三、中國貴州納嬈剖面碳酸鹽岩穩定碳氧同位素…………………..100 附錄四、XRD分析結果…………………………………………………….117 附錄五、羅悃剖面連續取樣結果………………………………………….120

    王向東、金玉玕,2000,石炭紀年代地層學研究概況,地層學雜誌,24
    卷,2期,90-98頁。
    王志浩、祁玉平、王向東、王玉淨,2004,貴州羅甸納水上石炭統(賓
    夕法尼亞亞系)地層的再研究,微體古生物學報,21卷,2期,111-129頁。
    左景勳、童金南、邱海鷗、趙來時,2006,下揚子地區早三疊世碳酸鹽
    岩碳同位素組成的演化特徵,中國科學D輯,地球科學,36卷,2期,109-122頁。
    李儒峰、劉本培、趙澄林,1997,揚子板塊石炭紀沉積層序及其全球性
    對比研究,沉積學報,15卷,3期,23-28頁。
    芮琳,王志浩,張遴信,1987,羅蘇階上石炭統底部一個新的年代地層
    單位,地層學雜誌,11卷,2期,103-115頁。
    郄文昆、王向東,2012,石炭紀-早二疊世滇黔桂盆地北緣深水區的地層
    序列及沉積演化,地質科學,47卷,4期,1071-1084頁。
    程裕淇、沈永和、曹國權、范承鈞、尚瑞鈞、楊明桂、張良臣、黃崇軻、
    周維屏、馬清陽,1994,中國區域地質概論:地質出版社。
    貴州省地質礦產局,1984,貴州區域地質誌,北京,地質出版社,698頁。
    Algeo, T.J., Wilkinson, B.H., Lohmann, K.C., 1992. Meteoric-burial
    diagenesis of Middle Pennsylvanian limestones in the Orogrande Basin, New Mexico: Water/rock interactions and basin geothermics. Journal of Sedimentary Petrology 62, 652 - 670.
    Algeo, T. J., Berner, R. A., Maynard, J. B., and Scheckler, S. E., 1995, Late
    Devonian oceanic anoxic events and biotic crises:Rooted in the evolution of vascular land plants?:The Geological Society of America, v.5, p.45, 64-66.
    Anderson, T. F., and Arthur, M. A., 1983, Stable isotopes of oxygen and
    carbon and their application to sedimentologic and paleoenvironmental problems, in Arthur, M. A., Anderson, T. F., Kaplan, I. R., Veizer, J., and Land, L. Sl., eds, Stable isotopes in sedimentary geology: SEPM short Course, no. 10, p. 1-151.
    Arthur, M.A., W.E. Dean, G.E. Claypool, Anomalous δ13C enrichment in
    modern marine organic carbon, Nature 315 (1985) 216-218.
    Bathurst, R. G. C., 1975, Carbonate sediments and their diagenesis:
    Amsterdam, Elsevier, 658p.
    Bauch, D., Erlenkeuser, H., Winckler, G., Pavlova, G., and Thiede, J., 2002,
    Carbon isotopes and habitat of polar planktic foraminifera in the Okhotsk Sea: the ‘carbonate ion effect’ under natural conditions, Marine Micropaleontology, 45(2), 83-99.
    Beerling, D. J., Lake, J. A., Berner, R. A., Hickey, L. J., Taylor, D. W., and
    Royer, D. L., 2002, Carbon isotope evidence implying high O2/CO2 ratios in the Permo-Carboniferous atmosphere: Geochimica Acta, v. 66, no. 21, p. 3757-3767.
    Berner, R. A., 1991, A model for atmospheric CO2 over Phanerozoic time:
    American Journal of Science, v. 291, no. 4, p. 339-376.
    Berner, R. A., 1994, GEOCARB II; a revised model of atmospheric CO2over
    Phanerozoic time: American Journal of Science, v. 294, no. 1, p. 56-91
    Berner, R. A., 1997, The rise of plants and their effect on weathering and
    atmospheric CO2: Science, v. 276, no. 5312, p. 544-546.
    Berner, R. A., 2001, Modeling atmospheric O2 over Phanerozoic time:
    Geochimica et Cosmochimica Acta, v.65, p. 685-694.
    Brand, U., and Veizer, J., 1980, Chemical diagenesis of a multicomponent
    system - 1. Trace elements: Journal of Sedimentary Petrology. v.50, p.1219-1236.
    Brand, U., Legrand-Blain, M., Streel, M., 2004.Biochemostratigraphy of the
    Devonian − Carboniferous boundary global stratotype section and point, Griotte Formation, La Serre, Montagne Noire, France.Palaeogeogr.Palaeoclimatol.Palaeoecol. 195, 99 – 124.
    Brenchley, P.J., Marshall, J.D., Carden, G.A., Robertson, D.B.R., Long,
    D.G.F., Meidla, T., Hints, L., Anderson, T.F., 1994.Bathymetric and isotopic evidence for a short-lived Late Ordovician glaciation in a greenhouse period. Geology 22, 295–298.
    Bruckschen, P., Oesmann, S., and Veizer, J., 1999, Isotope stratigraphy of the
    European Carboniferous: proxy signals for ocean chemistry, climate and tectonics: Chemical Geology, v. 161, p. 127-163.
    Bruckschen, P., Veizer, J., Schwark, L., Leythaeuser, D., 2001. Isotope
    stratigraphy for the transition from the late Palaeozoic greenhouse in the Permo-Carboniferous icehouse—new results. Terra Nostra 7–11 2001/4.
    Buggisch, W., Joachimski, M.M., 2006. Carbon isotope stratigraphy of the
    Devonian of Central and Southern Europe.Palaeogeography, Palaeoclimatology, Palaeoecology v. 240, 68 - 88.
    Buggisch, W., Joachimski, M., Sevastopulo, G., Morrow, J., 2008.
    Mississippian δ13Ccarband conodont apatite δ18O records—their relation to the Late Palaeozoic Glaciation. In: Soreghan, G.S., Montanez, I.P. (Eds.), The late Palaeozoic Earth system: Palaeogeography, Palaeoclimatology, Palaeoecology, 268, p. 273–292.
    Buggisch, W., Wang, X., Alekseev, A.S., Joachimski, M.M., 2011.
    Carboniferous-Permian carbon isotope stratigraphy of successions from China (Yangtze platform), USA (Kansas) and Russia (Moscow Basin and Urals).Palaeogeography, Palaeoclimatology, Palaeoecology 301, 18 - 38.
    Craig, H., and Gordon, L. I., 1965, Isotopic oceanography; deuterium and
    oxygen 18 variations in the ocean and the marine atmosphere, in Symposium on marine geochemistry, 1964, Occasional Publication - Narragansett Marine Laboratory, University of Rhode Island, p. 277-374.
    Crowell, J. C., 1978, Gondwanan glaciation, cyclothems, continental
    positioning, and climate change: American Journal of Science, v. 278, no. 10, p. 1345-1372.
    Dansgaard, W., 1964, Stable isotopes in precipitation: Tellus, v. 16, p.
    436-468.Desmaison, G., Moore, G.T., 1980. Anoxic environments and oil source bed genesis. Am. Assoc. Pet. Geol. Bull. 64, 1179 – 1209.
    Epstein, S., and Mayeda, T., 1953, Variation of O18 content of water from
    natural sources: Geochimica et CosmochimicaActa, v.4, p.213-224.
    Fairbanks, R. G., and Matthews, R. K., 1978, The marine oxygen isotope
    record in Pleistocene coral, Barbados, West Indies: Quaternary Research, v. 10, no. 2, p. 181-196.
    Fielding, C.R., Frank, T.D., Birgenheier, L.P., Rygel, M.C., Jones, A.T.,
    Roberts, J., 2008. Stratigraphic imprint of the Late Palaeozoic Ice Age in eastern Australia: a record of alternating glacial and non-glacial climate regime. Jour. Geol. Soc. London.165,129–140.
    Folk, R. L., 1968, Petrology of sedimentary rocks: Austin, Tex.:
    Hemphill Pub. Co., 170p.
    Frakes, J. A., Francis, J. E., and Skytus, J. I., 1992, Climate Modes of the
    Phanerozoic: The History of Earth’s Climate Over the Past 600 Million Years, Cambridge Univ. Press, Cambridge.
    Frank, J. R., Carpenter, A. B., and Ogleshy, T. W., 1982,
    Cathodoluminescence and composition of calcite cement in the Taum Sauk Limestone(upper Cambrian), southeast Missouri: Journal of Sedimentary Petrology, v.52, p.631-638.
    Frank, T. D., and Lohmann, K. C., 1996, Diagenesis of fibrous magnesian
    calcite marine cement: Implications for the interpretation of δ18O and δ13C values of ancient equivalents: Geochimica et Cosmochimica Acta, v. 60, no. 13, p. 2427-2436.
    George, M., 1977, Carbonate equilibrium in the Hosston Formation, central
    Mississippi [unpub.Mastersthesis]: Univ. Missouri-Columbia, 83p.
    Goericke, R. and Fry, B., 1994, Variations of marine plankton 13C with
    latitude, temperature and dissolved CO2 in the world ocean: Global Biogeochemical Cycles, v. 8, p.85–90.
    Gradstein, F. M., Ogg, J. G., Schmitz, M., and Ogg, G., 2012, The
    Carboniferous Period: Elsevier B.V, p.603
    Gradstein, F. M., Ogg, J. G., Schmitz, M., and Ogg, G., 2012, The Permian
    Period: Elsevier B.V, p.653
    Grossman, E. L., 1994, The carbon and oxygen isotopic record during the
    evolution of Pangea: Carboniferous to Triassic, in Klein, G, D,. ed., Pangea: Paleoclimate, tectonics, and sedimentation during accretion, Zenith, and breakup of a supercontinent: Geological Society of America Special Paper 288, p. 207-228.
    Grossman, E. L., Yancey, T. E., Jones, T. E., Bruckschen, P., Chuvashov, B.,
    Mazzullo, S. J., and Mii, H. S., 2008, Glaciation, aridification, and carbon sequestration in the Permo-Carboniferous: The isotopic record from low latitudes: Palaeogeography, Palaeoclimatology, Palaeoecology, v.268, p.222-233.
    Groves, J.R., Wang, Y., Qi, Y., Richards, B.C., Ueno, K. and Wang, X., 2012,
    Foraminiferal biostratigraphy of the Viséan-Serpukhovian (Mississippian) boundary interval at slope and platform sections in southern Guizhou (South China): Journal of Paleontology, v. 86(5), p. 753-774.
    Gruszczynski, M., Halas, S., Hoffman, A., and Malkowski, K., 1989, A
    brachiopod calcite record of the oceanic carbon and oxygen isotope shifts at the Permian/Triassic transition: Nature, v. 337, p. 64-68.
    Hays, P. D., and Grossman, E. L., 1991, Oxygen isotope in meteoric calcite
    cements as indicators of continental climate: Geology, v.19, p.441-444.
    Holser, T.W., 1997. Geochemical events documented in inorganic carbon
    isotopes. Palaeogeogr.Palaeoclimatol.Palaeoecol. 132, 173 – 182.
    Hudson J D. Carbon isotopes and limestone cement. Geology, 1975, 3: 19–22.
    International Commission on Stratigraphy, 2014, International
    Chronostratigraphic Chart. http://www.stratigraphy.org/ICSchart/ChronostratChart2014-02.pdf
    Isbell, J.L., Miller, M.F., Wolfe, K.L. &Lenaker, P.A. 2003. Timing of late
    Paleozoic glaciation in Gondwana: Was glaciation responsible for the development of northern hemisphere cyclothems? In: Chan, M.A. & Archer, A.A. (eds) Extreme Depositional Environments: Mega End Members in Geologic Time. Geological Society of America, Special Papers, 370, 5–24.
    Jimenez-Lopez, C., Romanek, C.S., Caballero, E., 2006. Carbon isotope
    fractionation in synthetic magnesian calcite. Geochim. Cosmochim. Acta 70, 1163–1171.
    Katz, D.A., Buoniconti, M.R., Montañez, I.P., Swart, P.K., Eberli, G.P.,
    Smith, L.B., 2007. Timing and local perturbations of the carbon pool in the lower Mississippian Madison Limestone, Montana and Wyoming. Palaeogeogr.Palaeoclimatol.Palaeoecol. 256, 231–253.
    Kaufman A J, Knoll A H. Neoproterozoic variations in the C-isotopic
    composition of seawater: Stratigraphic and biogeochemical implications. Precambrian Res, 1995, 73: 27—49
    Keith, M. L., and Weber, J. N., 1964, Carbon and oxygen isotopic
    composition of selected limestone and fossils: Geochimica et CosmochimicaActa, v.28, p.1787-1816.
    Kennedy, M.J., Runnegar, B., Prave, A.R., Hoffmann, K.H., and Arthur,
    M.A., Two or four Neopro-terozoic glaciations? Geology, 1998, 26: 1059–1063.
    Korte, C., Jasper, T., Kozur, H. W., Veizer, J., 2005, δ18O and δ13C of
    Permian brachiopods: A record of seawater evolution and continental glaciations: Palaeogeography, Palaeoclimatology, Palaeoecology v.224, p.333– 351.
    Krull, E.S., Lehrmann, D.J., Druke, D., Kessel, B., Yu, Y.Y., and Li,
    R.,Stable carbon isotope stratigraphy across the Permian-Triassic boundary in shallow marine carbonate platforms, Nanpanjiang Basin, South China.Palaeogeography, Palaeoclimatology, Palaeoecology, 2004, 204: 297~315.
    Lee, X. Q., and Wang, G. J., 2000, No vital effect on δ18O and δ13C values of
    fossil brachiopod shells, Middle Devonian of China: Geochimica et
    CosmochimicaActa, v. 15, p. 2649-2664.
    Lehnert, O., Erikkson, M.J., Calner, M., Joachimski, M., Buggisch, W., 2007.
    Concurrent sedimentary and isotopic indications for global climatic cooling in the late Silurian.ActaPalaeontol.Sin. 46, 249–255.
    Lowenstam, H. A., 1961, Mineralogy, 18O/16O ratios, and strontium and
    magnesium contents of recent and fossil brachiopods and their bearing on the history of the oceans: Journal of Geology, v.69, p.241-260.
    Lynch-Stieglitz, J., Stocker, T.F., Broecker, W.S. and Fairbanks, R.G.,1995,
    The influence of air-sea exchange on the isotopic composition of oceanic carbon: observations and modeling: Global Biogeochemical Cycles, v. 9, p.653–665.
    Magaritz, M., Anderson, R. Y., Holser, W. T., Saltzman, E. S., and Garber, J.,
    1983, Isotope shifts in the Late Permain of the Delaware Basin, Texas, precisely timed by varied sediments: Earth and Planetary Science Letters, v.66, p.111-124.
    McNichol, A.P., and E.R.M. Druffel, Variability of the δ13C of dissolved
    inorganic carbon at a site in the north Pacicc ocean, Geochim. Cosmochim.Acta 56 (1992) 3589-3592.
    Meyers, W.J., and Lohmann, K.C., Isotope geochemistry of regionally
    extensive calcite cement zones and marine components in Mississippian limestones, New Mexico. SocPaleontol Econ Mineral Spec Publ, 1985, 36: 223—239
    Millimans, J. D., 1974, Marine Carbonates.Springer, New York, 375p.
    Mii, H. S., Grossman, E. L., and Yancey, T. E., 1997, Stable carbon and
    oxygen isotope shifts in Permian seas of West Spitsbergen; global change or diagenetic artifact?: Geology, v. 25, no. 3, p. 227-230.
    Mii, H. S., Grossman, E. L., and Yancey, T. E., 1999, Carboniferous
    isotopestratigraphies of North America: Implications for Carboniferous paleoceanography and Mississippian glaciation: Geological Society of America Bulletin, v. 111, no. 7, p. 960-973.
    Mii, H. S., Grossman, E. L., Yancey, T. E., Chuvashov, B., Egorov, A.,
    andYegorov, A., 2001, Isotopic records of brachiopod shells from the Russian Platform; evidence for the onset of Mid-Carboniferous glaciation: Chemical Geology, v. 175, no. 1-2, p. 133-147.
    Muehlenbachs, K., and Clayton, R. N., 1976, Oxygen isotopes composition of
    the oceanic crust and its bearing on seawater: Journal of Geophysical Research, v. 81, p. 4365-4369.
    Owen, R., Kennedy, H., and Richardson, C., 2001, Experimental investigation
    into partitioning of stable isotopes between scallop (Pectenmaximus) shell calcite and sea water: Palaeogeography, Palaeoclimatology, Palaeoecology, v. 185, p. 163-174.
    Popp, B. N., 1986, The record of carbon, oxygen, sulfur, and strontium
    isotopes and trace elements in late Paleozoic brachiopods [Ph. D. thesis]: Urbana, Illinois, University of Illinois, 199p.
    Popp, B. N., Anderson, T. F., and Sandberg, P. A., 1986, Brachiopods as
    indicators of original isotopic compositions in some Paleoziclimestones: Geological society of America Bulletin, v. 97, p. 1262-1269.
    QIE, W.K., ZHANG, X.H., Du, Y.S., and Zhang, Y., 2011, Lower
    Carboniferous carbon isotope stratigraphy in South China: Implications for the Late Paleozoic glaciation: Earth Sciences, Vol.54, No.1: 84–92
    Railsback, L. B., Anderson, T. F., Ackerly, S. C., and Cisne, J. L., 1989,
    Paleoceanographic modeling of temperature-salinity profiles from stable isotopic data: Paleoceanography, v. 4, no. 5, p. 585-591.
    Rao, C. P., and Green, D. C., 1982, Oxygen and carbon isotopes of Early
    Permian cold-water carbonates, Tasmania, Australia: Journal of Sedimentary Petrology, v. 52, no. 4, p. 1111-1125.
    Raven, J.A., Falkowski, P.G., 1999. Oceanic sinks for atmospheric CO2.
    Plant, Cell and Environment 22 6, 741 e 755.
    Saltzman, M. R., 2002, Carbon and Oxygen isotope stratigraphy of the Lower
    Mississippian (Kinderhookian-lower Osagean), western United States: Implications for seawater chemistry and glaciation: GSA Bulletin, v. 114, no. 1, p. 96-108.
    Saltzman, M.R., 2003a. Organic carbon burial and phosphogenesis in the
    Antler Foreland Basin; an out-of-phase relationship during the Lower Mississippian. J. Sed. Res. 73, 844–855.
    Saltzman, M.R., Groessens, E., Zhuravlev, A.V., 2004. Carbon cycle models
    based on extreme changes in δ13C; an example from the lower Mississippian. Palaeogeogr.Palaeoclimatol.Palaeoecol. 213, 359–377.
    Samtleben, C., Munnecke, A., Bickert, T., Pätzold, J., 1996. The Silurian of
    Gotland (Sweden): facies interpretation based on stable isotopes in brachiopod shells. Geol. Rundsch. 85, 278–292.
    Sarmiento, J.L., Gruber, N., 2006. Ocean Biogeochemical Dynamics.
    Princeton University Press, Princeton NJ (USA), pp. 503.
    Savin, S. M., 1977, The history of the Earth’s surface temperature during the
    past 100 million years: Annual Review of Earth and Planetary Sciences, v. 5, p. 319-355.
    Scotese, C. R., and Mckerrow, W. S., 1990, Revised world maps and
    introduction, in Mckerrow, W.S. and Scotese, C. R. eds, Palaeozoicpalaeogeography and biogeography: The Geological Society of London, Memoir no.12, p.1-21.
    Scotese, C. R., Boucot, A.J., and McKerrow, W. S., 1999, Gondwana
    palaeogeography and palaeoclimatology: Journal of African Earth Scince, v. 28, no. 1, p. 99-114.
    Stanley, S. M., 1999, Earth system history: W.H. Freeman, New York, 615p.
    Shackleton, N.J., and Opdyke, N.D., 1973, Oxygen isotope and
    paleomagnetic stratigraphy of Equatorial Pacific core V28-238: Oxygen isotope temperaure and ice volumes on a 105 year and 106 year scale: Quaternary Research, v. 3, p. 39-55.
    Shackleton, N. J., 1977, The oxygen isotope stratigraphic record of the late
    Pleistocene: Philosophical Transactions of the Royal Society of London, Series B: Biological Sciences, v. 280, no. 972, p.169-182.
    Sheppard, S.M., Schwarcz, H.P., 1970. Fractionation of carbon and oxygen
    isotopes and Magnesium between Coexisting metamorphic Calcite and Dolomite. Contrib. Mineral. Petr. 26 (3), 161–198.
    Spero, H. J., Bijma, J., Lea, D. W. and Bemis, B. E., 1997, Effect of seawater
    carbonate concentration on foraminiferal carbon and oxygen isotopes: Nature, v. 390, 497–500.
    Thiede, J., Bauch, D., Erlenkeuser, H., Winckler, G., Pavlova G. and Thiede,
    J., 2002, Carbon isotopes and habitat of polar planktic foraminifera in the Okhotsk Sea: the ‘carbonate ion effect’ under natural conditions: Marine Micropaleontology, v. 45, p. 83–99..
    Urey, H. C., Lowenstam, H. A., Epstein, S., and McKinney, C. R., 1951,
    Measurement of paleotemperatures and temperatures of the Upper Cretaceous of England, Denmark, and southeast United States: Geological Society of America Bulletin, v. 62, p. 399-416.
    Xiao, S.H., Knoll, A.H., Kaufman, A.J., Yin, L., and Zhang, Y.,
    Neoproterozoic fossils in Mesoproterozoic rocks?Chemostratigraphic resolution of a biostratigraphic conundrum from the North China Platform. Precambrian Res, 1997, 84: 197—220
    Veevers, J. J., and Powell, M., 1987, Late Paleozoic glacial episodes in
    Gondwanaland reflected in transgressive-regressive depositional sequences in Euramerica, Geological Society of America Bulletin, v. 98, no. 4, p. 475-487.
    Veizer, J., and Hoefs, J., 1976, The nature of O18/O16 and C13/C12 secular
    trends in sedimentary carbonate rocks: Geochimica et CosmochimicaActa., v.40, p.1387-1395
    Wang, W., Cao, C., and Wang, Y., 2004,The carbon isotope excursion on
    GSSP candidate section of Lopingian-Guadalupian boundary. Earth and Planetary Science Letters, 220, 57-67.
    Wang, Z.H. and A.C. Higgins, 1989, Conodont zonation of the Namurian —
    the Lower Permian strata in south Guizhou, China. — Paleont. Cathayana, 4: 261-325.
    Wenzel, B.C., Joachimski, M.M., 1996. Carbon and oxygen isotopic
    compositions of Silurian brachiopods (Gotland/Sweden): palaeoceanographic implications. Palaeogeogr.Palaeoclimatol.Palaeoecol. 122, 143–166.
    Zeng, J., Cao, C.Q., Davydov, V.I., Shen, S.Z., 2012. Carbon isotope
    chemostratigraphy and implications of palaeoclimatic changes during the Cisuralian (Early Permian) in the southern Urals, Russia. Gondwana Research 21, p. 601-610.
    Ziegler, A. M., Hulver, M. L., and Rowley, D. B., 1997, Permian world
    topography and climate, in Martini, I. Peter (ed.), Late glacial and postglacial environmental changes; Quaternary, Carboniferous-Permian, and Proterozoic, Oxford University, New York, p. 111-142.

    下載圖示
    QR CODE