簡易檢索 / 詳目顯示

研究生: 朱家緯
Chu, Ka-Ui
論文名稱: Max Fast Fourier Transform (maxFFT) Clustering Approach for Classifying Indoor Air Quality
Max Fast Fourier Transform (maxFFT) Clustering Approach for Classifying Indoor Air Quality
指導教授: 賀耀華
Ho, Yao-Hua
口試委員: 陳伶志
Chen, Ling-Jyh
劉宇倫
Liu, Yu-Lun
賀耀華
Ho, Yao-Hua
口試日期: 2022/06/28
學位類別: 碩士
Master
系所名稱: 資訊工程學系
Department of Computer Science and Information Engineering
論文出版年: 2022
畢業學年度: 110
語文別: 英文
論文頁數: 45
英文關鍵詞: Indoor Air Quality Clustering, Time-series Clustering, K-means Clustering
研究方法: 實驗設計法觀察研究
DOI URL: http://doi.org/10.6345/NTNU202201215
論文種類: 學術論文
相關次數: 點閱:108下載:6
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 空氣汙染對人體會有負面的影響,空氣品質感測器 (空氣盒子) 可以定時紀錄室內空氣品質狀況,無論是狀態的改變、或是汙染物的累積,皆可以透過空氣盒子的數值來觀測。室外空氣品質的改善需透過眾人合作,而室內的空氣改善較能透過一己之力來達成。為了改善空氣品質,本研究希望對場域內不同的場地的空氣品質進行分群,基於此分群結果可以進行後續的分析與改善。

    本研究使用了位於台灣的校園室內空氣品質資料,在沒有任何其他外部資訊的條件下,單純使用每個場域的空氣品質數值的走勢,對該場域的空氣品質進行分群,當中使用了時間序列分解、快速傅立葉轉換 (fast Fourier transform, FFT),以提升分群效率以及提取所需資訊。最後的結果顯示在沒有地理資訊或使用情形的條件下,分群結果可以反映出空間的通風狀況。

    Air pollution is a severe problem for the global environment. It is essential to improve air pollution. The air quality sensors (airbox) can record the air quality automatically, whether it is the change of status or the accumulation of pollutants. While outdoor air quality improvement requires the cooperation of many people, we can improve indoor air quality skillfully. This study aims to cluster the air quality into different clustering without other external information such as geographical location or field usage. Based on the results of this clustering, provide further analysis and improvement.

    This study uses indoor air quality data from the campus in Taiwan without any other external information. We apply K-means as the clustering strategy and use time-series decomposition and fast Fourier transform (FFT) to improve the efficiency of the clustering and extract the required feature. The final results show that without geographical information or usage conditions, the clustering results can reflect the ventilation of the space.

    Chapter 1 Introduction 1 1.1 Background 1 1.2 Motivation 2 1.3 Contributions of the Thesis 3 Chapter 2 Related Work 5 2.1 Indoor Air Quality 5 2.1.1 Indoor Air Quality Monitoring 5 2.1.2 Indoor Air Quality Prediction 6 2.2 Cluster Analysis 7 2.2.1 Air Quality Clustering 8 2.2.2 Time-series Clustering 9 2.2.3 K-means Clustering 10 2.3 Dynamic Time Warping 12 2.4 Time Series Decomposition 13 2.5 Fast Fourier Transform 16 Chapter 3 Method Used 18 3.1 Pre-processing 18 3.1.1 Data Collection 18 3.1.2 Filter and Smoothing 20 3.2 Time Series Decomposition on CO2 Concentration 22 3.3 Fast Fourier Transform 24 3.4 K-means Clustering 25 Chapter 4 Experiment Process 26 4.1 Cluster result with Raw Data 26 4.2 Cluster result with Cyclical Components 29 4.3 Cluster result with max(FFT) 33 4.4 Type definition on K-means clustering result 35 4.5 Calculation Time 36 Chapter 5 Conclusion and Future Work 38 References 40

    [1] W.H.O.(WHO), “Air pollution.” https://www.who.int/health-topics/air-pollution, 2016. Accessed: Thursday 21st July, 2022.
    [2] N. Mahyuddin and H. Awbi, “A review of co2 measurement procedures in ventilation research,” International Journal of Ventilation, vol. 10, no. 4, pp. 353–370, 2012.
    [3] U.S.E.P.A. (EPA), “Indoor air quality (iaq).” https://www.epa.gov/indoor-air-quality-iaq. Accessed: Thursday 21st July, 2022.
    [4] A. Jones, “Indoor air quality and health,” Atmospheric Environment, vol. 33, no. 28, pp. 4535–4564, 1999.
    [5] J. M. Samet, M. C. Marbury, and J. D. Spengler, “Health effects and sources of indoor air pollution. part i,” American Review of Respiratory Disease, vol. 136, pp. 1486–1508, Dec. 1987.
    [6] K. L. Abdullahi, J. M. Delgado-Saborit, and R. M. Harrison, “Emissions and indoor concentrations of particulate matter and its specific chemical components from cooking: A review,” Atmospheric Environment, vol. 71, pp. 260–294, 2013.
    [7] J. M. Samet, “Radon and Lung Cancer,” JNCI: Journal of the National Cancer Institute, vol. 81, pp. 745–758, 05 1989.
    [8] V. Turanjanin, B. Vuievi, M. Jovanovi, N. Mirkov, and I. Lazovi, “Indoor CO2 measurements in Serbian schools and ventilation rate calculation,” Energy, vol. 77, pp. 290–296, 2014.
    [9] P. A. Scheff, V. K. Paulius, S. W. Huang, and L. M. Conroy, “Indoor air quality in a middle school, part i: Use of CO2 as a tracer for effective ventilation,” Applied Occupational and Environmental Hygiene, vol. 15, pp. 824–834, Jan. 2000.
    [10] C. Zhu and N. Li, “Study on grey clustering model of indoor air quality indicators,” Procedia Engineering, vol. 205, pp. 2815–2822, 2017. 10th International Symposium on Heating, Ventilation and Air Conditioning, ISHVAC2017, 19-22 October 2017, Jinan, China.
    [11] U. Satish, M. J. Mendell, K. Shekhar, T. Hotchi, D. Sullivan, S. Streufert, and W. J. Fisk, “Is CO2 an indoor pollutant? direct effects of low-to-moderate CO2 concentrations on human decision-making performance,” Environmental Health Perspectives, vol. 120, pp. 1671–1677, Dec. 2012.
    [12] K. Azuma, N. Kagi, U. Yanagi, and H. Osawa, “Effects of low-level inhalation exposure to carbon dioxide in indoor environments: A short review on human health and psychomotor performance,” Environment International, vol. 121, pp. 51–56, 2018
    [13] L.-J. Chen, Y.-H. Ho, H.-C. Lee, H.-C. Wu, H.-M. Liu, H.-H. Hsieh, Y.-T. Huang, and S.-C. C. Lung, “An open framework for participatory pm2.5 monitoring in smart cities,” IEEE Access, vol. 5, pp. 14441–14454, 2017.
    [14] Y.-H. Ho, P.-E. Li, L.-J. Chen, and Y.-L. Liu, Indoor Air Quality Monitoring System for Proactive Control of Respiratory Infectious Diseases: Poster Abstract, p. 693–694. New York, NY, USA: Association for Computing Machinery, 2020.
    [15] A. Moreno-Rangel, T. Sharpe, F. Musau, and G. McGill, “Field evaluation of a low-cost indoor air quality monitor to quantify exposure to pollutants in residential environments,” Journal of Sensors and Sensor Systems, vol. 7, no. 1, pp. 373–388, 2018.
    [16] J. Jo, B. Jo, J. Kim, S. Kim, and W. Han, “Development of an IoT-based indoor air quality monitoring platform,” Journal of Sensors, vol. 2020, pp. 1–14, Jan. 2020.
    [17] C.-Y. Lo, W.-H. Huang, M.-F. Ho, M.-T. Sun, L.-J. Chen, K. Sakai, and W.-S. Ku, “Recurrent learning on pm2.5 prediction based on clustered airbox dataset,” IEEE Transactions on Knowledge and Data Engineering, pp. 1–1, 2020.
    [18] L. C. Tagliabue, F. Re Cecconi, S. Rinaldi, and A. L. C. Ciribini, “Data driven indoor air quality prediction in educational facilities based on iot network,” Energy and Buildings, vol. 236, p. 110782, 2021.
    [19] J. Santos, P. Leroux, T. Wauters, B. Volckaert, and F. De Turck, “Anomaly detection for smart city applications over 5g low power wide area networks,” in NOMS 2018 - 2018 IEEE/IFIP Network Operations and Management Symposium, pp. 1–9, 2018.
    [20] G. Huang, L.-J. Chen, W.-H. Hwang, S. Tzeng, and H.-C. Huang, “Real-time PM2.5 mapping and anomaly detection from AirBoxes in taiwan,” Environmetrics, vol. 29, p. e2537, Oct. 2018.
    [21] Y. Liu, Z. Pang, M. Karlsson, and S. Gong, “Anomaly detection based on machine learning in IoT-based vertical plant wall for indoor climate control,” Building and Environment, vol. 183, p. 107212, Oct. 2020.
    [22] V. V. Tran, D. Park, and Y.-C. Lee, “Indoor air pollution, related human diseases, and recent trends in the control and improvement of indoor air quality,” International Journal of Environmental Research and Public Health, vol. 17, no. 8, 2020.
    [23] A. M. Abbasi, M. Motamedzade, M. Aliabadi, R. Golmohammadi, and L. Tapak, “The impact of indoor air temperature on the executive functions of human brain and the physiological responses of body,” Health promotion perspectives, vol. 9, no. 1, p. 55, 2019.
    [24] L. Li, Y. Lin, T. Xia, and Y. Zhu, “Effects of electronic cigarettes on indoor air quality and health,” Annual review of public health, vol. 41, pp. 363–380, 2020.
    [25] N. Agarwal, C. S. Meena, B. P. Raj, L. Saini, A. Kumar, N. Gopalakrishnan, A. Kumar, N. B. Balam, T. Alam, N. R. Kapoor, and V. Aggarwal, “Indoor air quality improvement in covid-19 pandemic: Review,” Sustainable Cities and Society, vol. 70, p. 102942, 2021.
    [26] V. K. H. Bui, T. N. Nguyen, V. Van Tran, J. Hur, I. T. Kim, D. Park, and Y.-C. Lee, “Photocatalytic materials for indoor air purification systems: An updated mini-review,” Environmental Technology & Innovation, vol. 22, p. 101471, 2021.
    [27] M. Bramer, Clustering. Springer, 2007.
    [28] P.-E. Danielsson, “Euclidean distance mapping,” Computer Graphics and Image Processing, vol. 14, no. 3, pp. 227–248, 1980.
    [29] R. A. FISHER, “The use of multiple measurements in taxonomic problems,” Annals of Eugenics, vol. 7, no. 2, pp. 179–188, 1936.
    [30] A. Chakraborty, N. Faujdar, A. Punhani, and S. Saraswat, “Comparative study of k-means clustering using iris data set for various distances,” in 2020 10th International Conference on Cloud Computing, Data Science Engineering (Confluence), pp. 332–335, 2020.
    [31] A. K. Jain, “Data clustering: 50 years beyond k-means,” Pattern Recognition Letters, vol. 31, no. 8, pp. 651–666, 2010. Award winning papers from the 19th International Conference on Pattern Recognition (ICPR).
    [32] A. Caron, N. Redon, P. Coddeville, and B. Hanoune, “Identification of indoor air quality events using a k-means clustering analysis of gas sensors data,” Sensors and Actuators B: Chemical, vol. 297, p. 126709, 2019.
    [33] S. K. Sunori, P. B. Negi, S. Maurya, P. Juneja, A. Rana, et al., “K-means clustering of ambient air quality data of uttarakhand, india during lockdown period of covid-19 pandemic,” in 2021 6th International Conference on Inventive Computation Technologies (ICICT), pp. 1254–1259, IEEE, 2021.
    [34] Y. Chen, L. Wang, F. Li, B. Du, K.-K. R. Choo, H. Hassan, and W. Qin, “Air quality data clustering using epls method,” Information Fusion, vol. 36, pp. 225–232, 2017.
    [35] C. Zhu and N. Li, “Study on grey clustering model of indoor air quality indicators,” Procedia Engineering, vol. 205, pp. 2815–2822, 2017.
    [36] A. Delgado, P. Montellanos, and J. Llave, “Air quality level assessment in lima city using the grey clustering method,” in 2018 IEEE International Conference on Automation/XXIII Congress of the Chilean Association of Automatic Control (ICA-ACCA), pp. 1–4, 2018.
    [37] J.-H. Chang, C.-Y. Tseng, H.-H. Chiang, and R.-H. Hwang, “Analysis of influential factors in secondary pm2. 5 by k-medoids and correlation coefficient,” in 2017 IEEE 7th International Symposium on Cloud and Service Computing (SC2), pp. 177–182, IEEE, 2017.
    [38] S. Aghabozorgi, A. Seyed Shirkhorshidi, and T. Ying Wah, “Time-series clustering – a decade review,” Information Systems, vol. 53, pp. 16–38, 2015.
    [39] N. G. Dincer and Özge Akku¸s, “A new fuzzy time series model based on robust clustering for forecasting of air pollution,” Ecological Informatics, vol. 43, pp. 157–164, Jan. 2018.
    [40] W. Alahamade, I. Lake, C. E. Reeves, and B. De La Iglesia, “A multi-variate time series clustering approach based on intermediate fusion: A case study in air pollution data imputation,” Neurocomputing, 2021.
    [41] J. Li, H. Izakian, W. Pedrycz, and I. Jamal, “Clustering-based anomaly detection in multivariate time series data,” Applied Soft Computing, vol. 100, p. 106919, 2021.
    [42] Dynamic Time Warping, pp. 69–84. Berlin, Heidelberg: Springer Berlin Heidelberg, 2007.
    [43] M. WEST, “Time series decomposition,” Biometrika, vol. 84, pp. 489–494, 06 1997.
    [44] M. T. Heideman, D. H. Johnson, and C. S. Burrus, “Gauss and the history of the fast fourier transform,” Archive for History of Exact Sciences, vol. 34, no. 3, pp. 265–277, 1985.
    [45] S. Winograd, “On computing the discrete fourier transform,” Mathematics of computation, vol. 32, no. 141, pp. 175–199, 1978.
    [46] E. Upton and G. Halfacree, Raspberry Pi user guide. John Wiley & Sons, 2014.

    下載圖示
    QR CODE