研究生: |
林姵吟 Lin, Pei-Yin |
---|---|
論文名稱: |
高強度間歇運動與中強度耐力運動對大腦與肌肉氧飽和度之影響 Influences of high intensity interval exercise and moderate intensity endurance exercise on cerebral and muscular oxygen saturation |
指導教授: |
鄭景峰
Cheng, Ching-Feng |
學位類別: |
碩士 Master |
系所名稱: |
運動競技學系 Department of Athletic Performance |
論文出版年: | 2015 |
畢業學年度: | 103 |
語文別: | 中文 |
論文頁數: | 75 |
中文關鍵詞: | 全力衝刺 、中樞調節 、運動類型 、近紅外線光譜儀 |
英文關鍵詞: | all-out sprint, central governor, types of exercise, near-infrared spectroscopy |
論文種類: | 學術論文 |
相關次數: | 點閱:138 下載:31 |
分享至: |
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
目的:探討高強度間歇運動 (high intensity interval exercise, HIIE) 與中強度耐力運動 (moderate intensity endurance exercise, MIEE) 對大腦與肌肉氧飽和度之影響。方法:本研究共招募12位男性大學生,實施遞增負荷運動測驗以判定最大攝氧量。間隔48小時後,受試者需以隨機平衡次序方式進行HIIE (6趟30秒溫蓋特衝刺,5分鐘動態恢復) 及MIEE (第1換氣閥值的強度,持續60分鐘) 。以近紅外線光譜儀測量左、右前額葉與肌肉的氧飽和度。結果:MIEE的腦部含氧血紅素 (oxyhemoglobin, O2Hb) (右:4.94 ± 1.07; 左:5.00 ± 1.42 µmol ) 顯著高於HIIE的第1趟 (右:2.25 ± 0.99;左:2.30 ± 1.18 µmol) (p < .05) 。腦部去氧含氧血紅素差 (O2Hb difference, DiffHb) 的部分,MIEE的腦部DiffHb (右:3.84 ± 1.05;左:4.32 ± 1.09 µmol) 顯著高於第1趟 (右:1.96 ± 1.04;左:1.94 ± 1.16 µmol) (p < .05) 。除此之外,HIIE後段衝刺的腦部O2Hb與DiffHb皆顯著高於前段 (p < .05) 。肌肉O2Hb的部分,MIEE (-9.10 ± 7.17 µmol) 分別顯著高於HIIE (從第1趟到第6趟分別為:-19.33 ± 5.92;-19.09 ± 5.52;-18.67 ± 5.55;-18.74 ± 5.53;-18.73 ± 5.84;-18.94 ± 6.01 µmol) (p < .05) 。肌肉DiffHb的部分,MIEE (-26.27 ± 11.63 µmol) 顯著高於HIIE (從第1趟到第6趟分別為:-41.21 ± 12.17;-42.46 ± 12.23;-41.76 ± 12.15;-41.08 ± 12.29;-40.39 ± 12.38;-40.02 ± 12.98 µmol) 。結論:相較於MIEE,僅在HIIE初期發現較低的腦部氧飽和度。這可能是由於人體在HIIE中,啟動的保護機制,使大腦得以優先使用氧氣。
Purpose: To investigate the effects of high intensity interval exercise (HIIE) and moderate intensity endurance exercise (MIEE) on cerebral and muscular oxygenation. Methods: Twelve collegiate male students voluntarily participated in this study. During the first visit, participants performed a graded exercise test to determine the maximal oxygen uptake. After 48 hours, participants performed the HIIE (6 × 30-s Wingate sprints with 5-min active recovery) and MIEE (intensity at 1st ventilatory threshold for 60-min), in a randomized counter-balance order. Near-infrared spectroscopy was used to evaluate the oxygenation in right (R) and left (L) prefrontal cortex and quadriceps. Results: The cerebral oxyhemoglobin (O2Hb) at MIEE (R: 4.94 ± 1.07; L: 5.00 ± 1.42 µmol) was significantly higher than that at 1st sprint (R: 2.25 ± 0.99; L: 2.30 ± 1.18 µmol) (p < .05). The cerebral O2Hb difference (DiffHb) at MIEE (R: 3.8 ± 1.05; L: 4.32 ± 1.09 µmol) was significantly higher than that at 1st sprint (R: 1.96 ± 1.04; L: 1.94 ± 1.16 µmol) (p < .05). Moreover, the cerebral O2Hb and DiffHb at the second period were significantly higher than those at the first period of HIIE. The muscular O2Hb at MIEE (-9.10 ± 7.17 µmol) was significantly higher than those at HIIE (from sprint 1 to 6 were -19.33 ± 5.92, -19.09 ± 5.52, -18.67 ± 5.55, -18.74 ± 5.53, -18.73 ± 5.84, and -18.94 ± 6.01 µmol) (p < .05). The muscular DiffHb at MIEE (-26.27 ± 11.63 µmol) was significantly higher than those at HIIE (from sprint 1 to 6 were -41.21 ± 12.17, -42.46 ± 12.23, -41.76 ± 12.15, -41.08 ± 12.29, -40.39 ± 12.38, and -40.02 ± 12.98 µmol) (p < .05). Conclusions: Lower cerebral oxygenation was only found at the first period of HIIE while comparing with the MIEE. Therefore, the brain might have a higher priority of oxygen uptake due to a protective mechanism during the HIIE.
王錫崗 (譯) (2006) 。人體生理學。台北市:新文京。(Stuart Ira Fox, 2005)
朱文洋、林廷燦、鍾瑞嶂 (2010) 。暈厥 Syncope-An Update。內科學誌,21(2),90-108。
吳盈光、杜明勳 (2007) 。常見昏厥及其評估。基層醫學, 22(1),28-34。
邱皓政 (2011) 。量化研究與統計分析 (五版) 。台北市:五南。
Antosiewicz, J., Kaczor, J. J., Katarzyna, K., Laskowski, R., Kujach, S., Luszczyk, M., ... Ziemann, E. (2013). Repeated “all out” interval exercise causes an increase in serum hepcidin concentration in both trained and untrained men. Cellular Immunology, 283(1-2), 12-17.
Astorino, T. A., Allen, R. P., Roberson, D. W., Jurancich, M., Lewis, R., & McCarthy, K. (2012). Attenuated RPE and leg pain in response to short-term high-intensity interval training. Physiology and Behavior, 10(2), 402-407.
Astorino, T. A., Schubert, M. M., Palumbo, E., Stirling, D., & McMillan, D. W. (2013). Effect of two doses of interval training on maximal fat oxidation in sedentary women. Medicine and Science in Sports and Exercise, 45(10), 1878-1886.
Astorino, T. A., & White, A. C. (2010). Assessment of anaerobic power to verify VO2max attainment. Clinical Physiology and Functional Imaging, 30(4), 294-300.
Bailey, S. J., Romer, L. M., Kelly, J., Wilkerson, D. P., DiMenna, F. J., & Jones, A. M. (2010). Inspiratory muscle training enhances pulmonary O2 uptake kinetics and high-intensity exercise tolerance in humans. Journal of Applied Physiology, 109(2), 457-468.
Beaver, W. L., Wasserman, K., & Whipp, B. J. (1986). A new method for detecting anaerobic threshold by gas exchange. Journal of Applied Physiology, 60(6), 2020-2027.
Bhambhani, Y. N. (2004). Muscle oxygenation trends during dynamic exercise measured by near infrared spectroscopy. Canadian Journal of Applied Physiology, 29(4), 504-523.
Bhambhani, Y., Malik, R., & Mookerjee, S. (2007). Cerebral oxygenation declines at exercise intensities above the respiratory compensation threshold. Respiratory Physiology and Neurobiology, 156(2), 196-202.
Bill, A., & Linder, J. (1976). Sympathetic control of cerebral blood flow in acute arterial hypertension. Acta Physiologica Scandinavica, 96(1), 114-121.
Billaut, F., Davis, J. M., Smith, K. J., Marino, F. E., & Noakes, T. D. (2010). Cerebral oxygenation decreases but does not impair performance during self‐paced, strenuous exercise. Acta Physiologica, 198(4), 477-486.
Billaut, F., & Smith, K. (2010). Prolonged repeated-sprint ability is related to arterial O2 in men. International Journal of Sports Physiology and Performance, 5(2), 197-209.
Buchheit, M., Abbiss, C. R., Peiffer, J. J., & Laursen, P. B. (2012). Performance and physiological responses during a sprint interval training session: Relationships with muscle oxygenation and pulmonary oxygen uptake kinetics. European Journal of Applied Physiology, 112(2), 767-779.
Burgomaster, K. A., Howarth, K. R., Phillips, S. M., Rakobowchuk, M., MacDonald, M. J., McGee, S. L., & Gibala, M. J. (2008). Similar metabolic adaptations during exercise after low volume sprint interval and traditional endurance training in humans. The Journal of Physiology, 586(1), 151-160.
Cheung, S. S. (2009). Comments on point: Counterpoint: Maximal oxygen uptake is/is not limited by a central nervous system governor. Journal of Applied Physiology, 106(1), 345.
Fan, J. L., Bourdillon, N., & Kayser, B. (2013). Effect of end‐tidal CO2 clamping on cerebrovascular function, oxygenation, and performance during 15‐km time trial cycling in severe normobaric hypoxia: The role of cerebral O2 delivery. Physiological Reports, 1(3), 1-15.
Garber, C. E., Blissmer, B., Deschenes, M. R., Franklin, B. A., Lamonte, M. J., Lee, I. M., … Swain, D. P. (2011). American College of Sports Medicine position stand. Quantity and quality of exercise for developing and maintaining cardiorespiratory, musculoskeletal, and neuromotor fitness in apparently healthy adults: Guidance for prescribing exercise. Medicine and Science in Sports and Exercise, 43(7), 1334-1359.
Gibala, M. J. (2007). High-intensity interval training: A time-efficient strategy for health promotion? Current Sports Medicine Reports, 6(4), 211-213.
Gibala, M. J., Little, J. P., MacDonald, M. J., & Hawley, J. A. (2012). Physiological adaptations to low-volume, high-intensity interval training in health and disease. The Journal of Physiology, 590(5), 1077-1084.
Gillen, J. B., & Gibala, M. J. (2014). Is high-intensity interval training a time-efficient exercise strategy to improve health and fitness? Applied Physiology, Nutrition, and Metabolism, 39(3), 409-412.
Gillen, J. B., Percival, M. E., Ludzki, A., Tarnopolsky, M. A., & Gibala, M. J. (2013). Interval training in the fed or fasted state improves body composition and muscle oxidative capacity in overweight women. Obesity, 2(11), 2249-2255.
González‐Alonso, J., Dalsgaard, M. K., Osada, T., Volianitis, S., Dawson, E. A., Yoshiga, C. C., & Secher, N. H. (2004). Brain and central haemodynamics and oxygenation during maximal exercise in humans. The Journal of Physiology, 557(1), 331-342.
Hamlin, M. J., Marshall, H. C., Hellemans, J., & Ainslie, P. N. (2010). Effect of intermittent hypoxia on muscle and cerebral oxygenation during a 20-km time trial in elite athletes: A preliminary report. Applied Physiology, Nutrition, and Metabolism, 35(4), 548-559.
Harper, A. M., Deshmukh, V. D., Rowan, J. O., & Jennett, W. B. (1972). The influence of sympathetic nervous activity on cerebral blood flow. Archives of Neurology, 27(1), 1-6.
Hoshi, Y., Kobayashi, N., & Tamura, M. (2001). Interpretation of near-infrared spectroscopy signals: A study with a newly developed perfused rat brain model. Journal of Applied Physiology, 90(5), 1657-1662.
Hughson, R. L. (2009). Oxygen uptake kinetics: Historical perspective and future directions. Applied Physiology, Nutrition, and Metabolism, 34(5), 840-850.
Ide, K., Boushel, R., Sørensen, H. M., Fernandes, A., Cai, Y., Pott, F., & Secher, N. H. (2000). Middle cerebral artery blood velocity during exercise with beta-1 adrenergic and unilateral stellate ganglion blockade in humans. Acta Physiologica Scandinavica, 170(1), 33-38.
Ide, K., & Secher, N. H. (2000). Cerebral blood flow and metabolism during exercise.
Progress in Neurobiology, 61(4), 397-414.
Imray, C. H. E., Walsh, S., Clarke, T., Tiivas, C., Hoar, H., Harvey, T. C., & Wright, A. D. (2003). Effects of breathing air containing 3%carbon dioxide, 35%oxygen or a mixture of 3%carbon dioxide/35%oxygen on cerebral and peripheral oxygenation at 150 m and 3459 m. Clinical Science, 104(3), 203-210.
Jones, B., Hesford, C. M., & Cooper, C. E. (2013). The use of portable NIRS to measure muscle oxygenation and haemodynamics during a repeated sprint running test. Oxygen Transport to Tissue XXXV, 789, 185-191.
Jordan, J., Shannon, J. R., Diedrich, A., Black, B., Costa, F., Robertson, D., & Biaggioni, I. (2000). Interaction of carbon dioxide and sympathetic nervous system activity in the regulation of cerebral perfusion in humans. Hypertension, 36(3), 383-388.
Kimm, S. Y., Glynn, N. W., McMahon, R. P., Voorhees, C. C., Striegel-Moore, R. H., & Daniels, S. R. (2006). Self-perceived barriers to activity participation among sedentary adolescent girls. Medicine and Science in Sports and Exercise, 38(3), 534-540.
Kita, Y., Gunji, A., Inoue, Y., Goto, T., Sakihara, K., Kaga, M., ... & Hosokawa, T. (2011). Self-face recognition in children with autism spectrum disorders: A near-infrared spectroscopy study. Brain and Development, 33(6), 494-503.
Krawczyk, D. C. (2002). Contributions of the prefrontal cortex to the neural basis of human decision making. Neuroscience and Biobehavioral Reviews, 26(6), 631-664.
Madsen, P. L., & Secher, N. H. (1999). Near-infrared oximetry of the brain. Progress in Neurobiology, 58(6), 541-560.
Miura, H., McCully, K., & Chance, B. (2003). Application of multiple NIRS imaging device to the exercising muscle metabolism. Spectroscopy: An International Journal, 17(2), 549-558.
Moraine, J. J., Lamotte, M., Berré, J., Niset, G., Leduc, A., & Naeijel, R. (1993). Relationship of middle cerebral artery blood flow velocity to intensity during dynamic exercise in normal subjects. European Journal of Applied Physiology and Occupational Physiology, 67(1), 35-38.
Moya, A., Sutton, R., Ammirati, F., Blanc, J. J., Brignole, M., Dahm, J. B., ... & Asteggiano, R. (2009). Guidelines for the diagnosis and management of syncope (version 2009). European Heart Journal, 30(21), 2631-2671.
Neary, J., Hall, K., & Bhambhani, Y. (2001). Vastus medialis muscle oxygenation trends during a simulated 20-km cycle time trial. European Journal of Applied Physiology, 85(5), 427-433.
Nielsen, H. B., Boesen, M., & Secher, N. H. (2001). Near‐infrared spectroscopy determined brain and muscle oxygenation during exercise with normal and resistive breathing. Acta Physiologica Scandinavica, 171(1), 63-70.
Noakes, T. D. (2011). Is it time to retire the AV Hill model? Sports Medicine, 41(4), 263-277.
Noakes, T. D., Peltonen, J. E., & Rusko, H. K. (2001). Evidence that a central governor regulates exercise performance during acute hypoxia and hyperoxia. Journal of Experimental Biology, 204(18), 3225-3234.
Nybo, L., & Nielsen, B. (2001). Middle cerebral artery blood velocity is reduced with hyperthermia during prolonged exercise in humans. The Journal of Physiology, 534(1), 279-286.
Ogoh, S., & Ainslie, P. N. (2009). Cerebral blood flow during exercise: Mechanisms of regulation. Journal of Applied Physiology, 107(5), 1370-1380.
Ogoh, S., Brothers, R. M., Barnes, Q., Eubank, W. L., Hawkins, M. N., Purkayastha, S., & Raven, P. B. (2005). The effect of changes in cardiac output on middle cerebral artery mean blood velocity at rest and during exercise. The Journal of Physiology, 569(2), 697-704.
Ogoh, S., Brothers, R. M., Eubank, W. L., & Raven, P. B. (2008). Autonomic neural control of the cerebral vasculature acute hypotension. Stroke, 39(7), 1979-1987.
Pereira, M. I., Gomes, P. S., & Bhambhani, Y. N. (2007). A brief review of the use of near infrared spectroscopy with particular interest in resistance exercise. Sports Medicine, 37(7), 615-624.
Périard, J. D., Thompson, M. W., Caillaud, C., & Quaresima, V. (2013). Influence of heat stress and exercise intensity on vastus lateralis muscle and prefrontal cortex oxygenation. European Journal of Applied Physiology, 113(1), 211-222.
Querido, J. S., & Sheel, A. W. (2007). Regulation of cerebral blood flow during exercise. Sports Medicine, 37(9), 765-782.
Racinais, S., Bishop, D., Denis, R., Lattier, G., Mendez-Villaneuva, A., & Perrey, S. (2007). Muscle deoxygenation and neural drive to the muscle during repeated sprint cycling. Medicine and Science in Sports and Exercise, 39(2), 268-274.
Riechman, S. E., Zoeller, R. F., Balasekaran, G., Goss, F. L., & Robertson, R. J. (2002). Prediction of 2000 m indoor rowing performance using a 30 s sprint and maximal oxygen uptake. Journal of Sports Sciences, 20(9), 681-687.
Romer, L. M., Haverkamp, H. C., Lovering, A. T., Pegelow, D. F., & Dempsey, J. A. (2006). Effect of exercise-induced arterial hypoxemia on quadriceps muscle fatigue in healthy humans. American Journal of Physiology, Regulatory, Integrative and Comparative Physiology, 290(2), R365-R375.
Rooks, C. R., Thom, N. J., McCully, K. K., & Dishman, R. K. (2010). Effects of incremental exercise on cerebral oxygenation measured by near-infrared spectroscopy: A systematic review. Progress in Neurobiology, 92(2), 134-150.
Rupp, T., Jubeau, M., Millet, G. Y., Wuyam, B., Levy, P., Verges, S., & Perrey, S. (2013). Muscle, prefrontal, and motor cortex oxygenation profiles during prolonged fatiguing exercise. Oxygen Transport to Tissue XXXV, 789, 149-155.
Rupp, T., & Perrey, S. (2008). Prefrontal cortex oxygenation and neuromuscular responses to exhaustive exercise. European Journal of Applied Physiology, 102(2), 153-163.
Secher, N. H., Seifert, T., & Van Lieshout, J. J. (2008). Cerebral blood flow and metabolism during exercise: Implications for fatigue. Journal of Applied Physiology, 104(1), 306-314.
Shibuya, K. I., Tanaka, J., Kuboyama, N., Murai, S., & Ogaki, T. (2004). Cerebral cortex activity during supramaximal exhaustive exercise. The Journal of Sports Medicine and Physical Fitness, 44(2), 215-219.
Shibuya, K. I., Tanaka, J., Kuboyama, N., & Ogaki, T. (2004). Cerebral oxygenation during intermittent supramaximal exercise. Respiratory Physiology and Neurobiology, 140(2), 165-172.
Sijie, T., Hainai, Y., Fengying, Y., & Jianxiong, W. (2012). High intensity interval exercise training in overweight young women. Journal of Sports Medicine and Physical Fitness, 52(3), 255-262.
Smith, K. J., & Billaut, F. (2010). Influence of cerebral and muscle oxygenation on repeated-sprint ability. European Journal of Applied Physiology, 109(5), 989-999.
Stutts, W. C. (2002). Physical activity determinants in adults. Perceived benefits, barriers, and self efficacy. AAOHN Journal: Official Journal of The American Association of Occupational Health Nurses, 50(11), 499-507.
Subudhi, A. W., Dimmen, A. C., & Roach, R. C. (2007). Effects of acute hypoxia on cerebral and muscle oxygenation during incremental exercise. Journal of Applied Physiology, 103(1), 177-183.
Subudhi, A. W., Miramon, B. R., Granger, M. E., & Roach, R. C. (2009). Frontal and motor cortex oxygenation during maximal exercise in normoxia and hypoxia. Journal of Applied Physiology, 106(4), 1153-1158.
Subudhi, A. W., Olin, J. T., Dimmen, A. C., Polaner, D. M., Kayser, B., & Roach, R. C. (2011). Does cerebral oxygen delivery limit incremental exercise performance? Journal of Applied Physiology, 111(6), 1727-1734.
Trapp, E. G., Chisholm, D. J., Freund, J., & Boutcher, S. H. (2008). The effects of high-intensity intermittent exercise training on fat loss and fasting insulin levels of young women. International Journal of Obesity (2005), 32(4), 684-691.
Trilk, J. L., Singhal, A., Bigelman, K. A., & Cureton, K. J. (2011). Effect of sprint interval training on circulatory function during exercise in sedentary, overweight/obese women. European Journal of Applied Physiology, 111(8), 1591-1597.
Trost, S. G., Owen, N., Bauman, A. E., Sallis, J. F., & Brown, W. (2002). Correlates of adults' participation in physical activity: Review and update. Medicine and Science in Sports and Exercise, 34(12), 1996-2001.
Van Lieshout, J. J., Pott, F., Madsen, P. L., van Goudoever, J., & Secher, N. H. (2001). Muscle tensing during standing effects on cerebral tissue oxygenation and cerebral artery blood velocity. Stroke, 32(7), 1546-1551.
Van Lieshout, J. J., & Secher, N. H. (2008). Point: Sympathetic activity does/does not influence cerebral blood flow. Journal of Applied Physiology, 105(4), 1364-1366.
Van Lieshout, J. J., Wieling, W., Karemaker, J. M., & Secher, N. H. (2003). Syncope, cerebral perfusion, and oxygenation. Journal of Applied Physiology, 94(3), 833-848.
Whyte, L. J., Ferguson, C., Wilson, J., Scott, R. A., & Gill, J. M. (2012). Effects of single bout of very high-intensity exercise on metabolic health biomarkers in overweight/obese sedentary men. Metabolism, 62(2), 212-219.
Whyte, L. J., Gill, J. M., & Cathcart, A. J. (2010). Effect of 2 weeks of sprint interval training on health-related outcomes in sedentary overweight/obese men. Metabolism, 59(10), 1421-1428.
Yasumura, A., Kokubo, N., Yamamoto, H., Yasumura, Y., Nakagawa, E., Kaga, M., ... & Inagaki, M. (2014). Neurobehavioral and hemodynamic evaluation of stroop and reverse stroop interference in children with attention-deficit/hyperactivity disorder. Brain and Development, 36(2), 97-106.
Zhang, R., Zuckerman, J. H., Iwasaki, K., Wilson, T. E., Crandall, C. G., & Levine, B. D. (2002). Autonomic neural control of dynamic cerebral autoregulation in humans. Circulation, 106(14), 1814-1820.