研究生: |
林啟升 Lin, Chi-Sheng |
---|---|
論文名稱: |
磁性異質結構之自旋轉矩鐵磁共振與自旋流轉換效率研究 Spin-Torque Ferromagnetic Resonance and the Charge-to-Spin current Conversion Efficiency of Magnetic Heterostructures |
指導教授: |
江佩勳
Jiang, Pei-hsun |
口試委員: | 江府峻 黃依萍 |
口試日期: | 2021/06/30 |
學位類別: |
碩士 Master |
系所名稱: |
物理學系 Department of Physics |
論文出版年: | 2021 |
畢業學年度: | 109 |
語文別: | 中文 |
論文頁數: | 69 |
中文關鍵詞: | 自旋–軌道耦合 、鐵磁性材料 、鐵磁共振 、自旋轉矩鐵磁共振 |
研究方法: | 實驗設計法 |
DOI URL: | http://doi.org/10.6345/NTNU202101050 |
論文種類: | 學術論文 |
相關次數: | 點閱:137 下載:0 |
分享至: |
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
本實驗透過電子束蒸鍍儀系統成長出15 nm/15 nm的Permalloy/Platinum雙層磁性材料透過銅箔及金製成的共平面波導(Coplanar waveguide,CPW)輸入微波訊號使樣品產生自旋轉矩鐵磁共振(Spin- torque Ferromagnetic resonance,ST-FMR)時在該結構的兩端量到一個電壓差(Vmix)並推算出其磁化飽和強度(Saturation magnetization,Ms),其在自旋電子學之應用中扮演相當重要的角色,它的實用性和廣泛使用主要是因為它是一種共振現象,其中較有效率的方法則是利用本身具有強自旋軌道耦合(Spin-orbit-coupling,SOC)的材料(如重原子金屬)中所發現的自旋霍爾效應(Spin Hall effect,SHE)。其能產生方向和外加電流垂直的自旋電流。本實驗有助於了解所產生的信號Vmix,由勞倫茲式(Lorentzians)及反勞倫茲式(Anti-Lorentzian)的組合,並透過測量不同頻率與磁場變化的共振磁場相關性比較其他不同製程找出品質穩定且較優良的方法,並分析出我們的自旋轉換效率為0.2044與其他期刊比較有較高的轉換效率,以及對角度變化的依賴性及各項力矩貢獻。
1. Guimaraes, M.H.D., et al., Spin-Orbit Torques in NbSe2/Permalloy Bilayers. Nano Lett,.18(2): p. 1311-1316. (2018)
2. Burkov, A. A. & Hawthorn, D. G. Spin and charge transport on the surface of a topological insulator. Phys. Rev. Lett. 105, 066802 (2010).
3. Culcer, D, Hwang, E. H., Stanescu, T. D. & Das Sarma, S. Two-dimensional surface charge transport in topological insulators. Phys. Rev. B 82, 155457 (2010).
4. Pesin, D. & MacDonald, A. H. Spintronics and pseudospintronics in graphene and topological insulators. Nature Mater. 11, 409–416 (2012).
5. Fischer, M. H., Vaezi, A., Manchon, A. & Kim, E.-A. Large spin torque in topological insulator/ferromagnetic metal bilayers. arXiv.1305.1328 (2013).
6. Mellnik, A.R., et al., Spin-transfer torque generated by a topological insulator. Nature,. 511(7510): p. 449-51 (2014)
7. Hasan, M. Z. & Kane, C. L. Topological insulators. Rev. Mod. Phys. 82, 3045–3067(2010).
8. A.B. Pippard: Magnetoresistance in Metals, Cambridge University Press (1989)
9. 盧志權 AMR 磁感測器設計 台灣磁性學會 會訊 51期 APR (2010)
10. Linder, J; Robinson, Jason W. A. Superconducting spintronics. Nature Physics. 2 April 11 (4): 307–315. Bibcode:2015NatPh..11..307L. ISSN 1745-2473. arXiv:1510.00713. doi:10.1038/nphys3242. (2015)
11. Eschrig ,M. Spin-polarized supercurrents for spintronics Physics Today 64(1), 43 (2011)
12. Thomas, Llewellyn H.. The Motion of the Spinning Electron. Nature. 117 (2945): 514. (1926)
13.. Griffiths,J. H. E, Anomalous High-frequency Resistance of Ferromagnetic Metals. Nature 158, 670–671 (1946).
14. Heinrich, B. Bland, J. A. C Ultrathin Magnetic Structures II: Measurement
15.Visintin, A. On Landau-Lifshitz’equations for ferromagnetism. Japan Journal of Applied Mathematics, 2(1), 69-84. (1985).
16. Kauffman, J. W., & Koehler, J. S. Quenching-In of Lattice Vacancies in Pure Gold. Physical Review, 97(2), 555. (1955).
17. Zhang, S., & Zhang, S. S. L.. Generalization of the Landau-Lifshitz-Gilbert Equation for Conducting Ferromagnets Physical Review Letters, 102(8), 086601.
(2009)
18. Sinova, J., et al., Spin Hall effects. Reviews of Modern Physics, 87(4): p. 1213-1260. (2015)
19. Hirsch, J. E. Spin Hall Effect. PHYSICAL REVIEW LETTERS, VOLUME 83, NUMBER 9(1999)
20 Ralph, D.C. and Stiles, M.D. Spin transfer torques. Journal of Magnetism and Magnetic Materials, 320(7): p. 1190-1216(2008)
21. Sklenar, J. Wei Zhang, Matthias B. Jungfleisch, Wanjun Jiang, Hilal Saglam, John E. Pearson, John B. Ketterson, and Axel Hoffmann. "Spin Hall Effects in Metallic Antiferromagnets – Perspectives for Future Spin-Orbitronics." AIP Advances 6, no. 5 (2016)
22. Wang, Y., et al., Room temperature magnetization switching in topological insulator-ferromagnet heterostructures by spin-orbit torques. Nat Commun, 8(1): p. 1364. (2017)
23. Wen, C. P. Coplanar waveguide: A surface strip transmission line suitable
for nonreciprocal gyromagnetic device applications. Microwave Theory and
Techniques, IEEE Transactions, 17(12), 1087-1090. (1969)
24. Simons, R. N. Coplanar waveguide circuits, components, and systems
(Vol. 165). John Wiley & Sons (2004)
25. Forman, M. A. Low-loss LIGA-fabricated coplanar waveguide and filter. Apmc 2006. December, 12: 905–1907(2006)
26. Kaidashev, E.M., et al., High electron mobility of epitaxial ZnO thin films on c-plane sapphire grown by multistep pulsed-laser deposition. Applied Physics Letters, 82(22): p. 3901-3903. (2003)
27. Reimer, L, Scanning electron microscopy physics of image formation and microanalysis. Berlin Springer, (1985)
28. Hawkes, P. W., Electron Optics and Electron Microscopy, 1st ed. Taylor and Francis Ltd, (1972)
29. De Graef ,M , Introduction to conventional transmission electron microscopy. Cambridge university press, (2003)
30.Liu, J., et al., Graphene as discharge layer for electron beam lithography on insulating substrate. Applied Physics Letters, 103(11) (2013)
31. Glöersen, P.G., Ion−beam etching. Journal of Vacuum Science and Technology, 12(1): p. 28-35(1975)
32. Anderson, O.L., H. Christensen, and P. Andreatch, Technique for Connecting Electrical Leads to Semiconductors. Journal of Applied Physics, 28(8): p. 923-923(1957)
33. Langenecker, B. Effects of Ultrasound on Deformation Characteristics of Metals. IEEE Transactions on Sonics and Ultrasonics. March ,13 (1): 1–8 [2018-04-02]. ISSN 0018-9537. doi:10.1109/t-su.1966.29367(1966)
34. Kurokawa, K. Power waves and the scattering matrix. Microwave Theory
and Techniques, IEEE Transactions on, 13(2), 194-202. (1965)
35. https://ebeam.wnf.uw.edu/ebeamweb/process/process/pmma.html
36. https://ebeam.wnf.uw.edu/ebeamweb/process/process/pmma_copolymer.html
37. Verba, R.Tiberkevich, V.Guslienko, K. Melkov, G. Slavin, A, Theory of Ground- State Switching in An Array of Magnetic Nanodots by Application of A Short External Magnetic Field Pulse. Phys. Rev. B 87, 134419 (2013).
38. Svelto,O, Principles of Lasers. Plenum, London (1989).
39. Luqiao L, Takahiro M, Ralph, D. C. and Buhrman,R. A. Spin-Torque Ferromagnetic Resonance Induced by the Spin Hall Effect. Phys. Rev. Lett. 106, 036601(2011)
40. Sklenar, J., Wei Z., Matthias B. Jungfleisch, Wanjun Jiang, Hilal Saglam, John E. Pearson, John B. Ketterson, and Axel Hoffmann. "Spin Hall Effects in Metallic Antiferromagnets – Perspectives for Future Spin-Orbitronics." AIP Advances 6, no. 5 (2016).
41. Vorgelegt V.,Martin O., Inverse spin Hall effect in metallic heterostructures(2015)
42. Sankey, J. C., P. M. Braganca, A. G. Garcia, I. N. Krivorotov, R. A. Buhrman, and D. C. Ralph. "Spin-Transfer-Driven Ferromagnetic Resonance of Individual Nanomagnets." Phys Rev Lett 96, no. 22: 227601. (2006)
43. Zhang, W., Sklenar, J. Hsu B., Jiang W., Matthias B. J., Xiao J., Frank Y. Fradin, et al. "Research Update: Spin Transfer Torques in Permalloy on Monolayer Mos2." APL Materials 4, no. 3 (2016).
44. Rojas-Sanchez, J. C., S. Oyarzun, Y. Fu, A. Marty, C. Vergnaud, S. Gambarelli, L. Vila, et al. "Spin to Charge Conversion at Room Temperature by Spin Pumping into a New Type of Topological Insulator: Alpha-Sn Films." Phys Rev Lett 116, no. 9: 096602(2016)
45. Wang, Y., Rajagopalan R., and Yang, H. "Fmr-Related Phenomena in Spintronic Devices." Journal of Physics D: Applied Physics 51, no. 27 (2018)
46. https://tw.tek.com/document/primer/what-vector-network-analyzer-and-how-does-it-work
47. Gregory M.,et al., "Current-Induced Torques with Dresselhaus Symmetry Due to Resistance Anisotropy in 2D Materials "ACS Nano , 13, 2, 2599–2605 (2019)
48. Nguyen, M,H, and Pai C,F. "Spin–Orbit Torque Characterization in a Nutshell." APL Materials 9, no. 3 (2021)