研究生: |
林佑勳 Lin, Yu-Hsun |
---|---|
論文名稱: |
具現場數位全像監控之雷射投影列印系統 Laser projection printing system with in-situ digital holographic monitoring |
指導教授: |
鄭超仁
Cheng, Chau-Jern |
學位類別: |
碩士 Master |
系所名稱: |
光電工程研究所 Graduate Institute of Electro-Optical Engineering |
論文出版年: | 2020 |
畢業學年度: | 108 |
語文別: | 中文 |
論文頁數: | 54 |
中文關鍵詞: | 全像術 、數位全像術 、雷射直接寫入技術 、光折變光柵 |
英文關鍵詞: | Holography, Digital Holography, Laser Direct Writing, Light-Induced Refractive Index Gratings |
DOI URL: | http://doi.org/10.6345/NTNU202000299 |
論文種類: | 學術論文 |
相關次數: | 點閱:150 下載:0 |
分享至: |
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
本論文提出了一套結合全像條紋列印技術和數位全像術的雷射投影列印系
統 並且展示了相位閃耀光柵與一般繞射光柵的製造與分析。全像條紋列印技術,起初是為了解決 一般合成 全像列印術對環境穩定度的高度要求以及雷射直接寫入的設備昂貴問題,有別於 逐點 直接 寫入能量的雷射直寫系統,此系統是讓光束帶著從數位微鏡裝置投影出來的條紋影像,然後 轉印到光敏感介質上,以形成光折變光柵透過光學的分析,得以讓此系統的校正與設備需求上不需要過多資金的投入。最後,我們結合了數位全像術,得以檢測與分析列印完成之元件的相位分佈做為曝光條件的調整依據使我們可以列印出0到2π分佈 的純相位全像片來製造繞射元件,使整個系統的應用價值提高,最後我們會把一般全像條紋系統列印的繞射光柵與本論文所列印的閃耀光柵 做一系列的比較與分析。
We demonstrated an integrated laser projection printing system coupled with digital holography. As high environmental stability is essential for synthetic holographic printer, the holographic fringe projection printer is presented. It not only capable to solved stability problem; but also high cost and calibration issues for laser direct writing technique. In laser direct writing technique, the energy will directly write onto holographic recording material and it’s different from the holographic fringe projection printing technique. For holographic fringe printing technique, the laser beam carries the information of fringe pattern from digital micro mirror device (DMD), and expose on the holographic recording material. When the hologram gets printed, we can get phase contrast of printed hologram by digital holographic system, therefore, we can adjust the condition of exposure, it means we can print out a phase-only diffraction optical element (DOE) and phase contrast in the range of 0 to 2π. Finally, both of diffraction grating and phase grating are printed out and compared the diffraction efficiency between them.
[1] E. H. Waller, S. Dix, J. Gutsche, A. Widera and G. Freymann, “Functional Metallic Microcomponents via Liquid-Phase Multiphoton Direct Laser Writing: A Review,’’ Micromachines, 10, 827 (2019)
[2] L. G. Neto, P.S.P. Cardona, G. A. Cirino, R. D. Mansano, P. B. Verdonck, “Design, fabrication, and characterization of a full complex-amplitude modulation diffractive optical element,” J. Micro Nanolithogr. MEMS MOEMS 2, 96-104 (2003).
[3] J. W. Goodman Introduction to Fourier Optics, W. H. Freeman, (1968).
[4] H. Yoshikawa and T. Yamaguchi, “Review of Holographic Printers for Computer-Generated Holograms,” IEEE Trans. Ind. Informat. 12, 1584-1589 (2016).
[5] T. Yamaguchi and H. Yoshikawa, “High Resolution Computer-Generated Rainbow Hologram” Appl. Sci. 8, 1995 (2018).
[6] H. Yoshikawa and T. Yamaguchi, “Computer-generated holograms for 3D display,’’ Chin. Opt. Lett. 7, 1079-1082 (2009)
[7] H. Yoshikawa and T. Yamaguchi, “Computer Generated Rainbow Hologram,” Opt. Rev. 6, 118-123 (1999).
[8] Y. C. Lin, Y. T. Lee, X. J. Lai, C. J. Cheng, and H. Y. Tu, “In situ Mapping of Light-Induced Refractive Index Gratings by Digital Holographic Microscopy,” Jpn. J. Appl. Phys. 49, 102501 (2010).
[9] R. M. Montgomery and M. R. Lange, “Amplitude and phase measurement technique for photorefractive gratings,” J Appl. Phys. 68, 4782-4787 (1990);
[10] D. Gabor, “A New Microscopic Principle,” Nature 161, 777-778 (1948).
[11] T. Zhang and I. Yamaguchi , “Three-dimensional microscopy with phase-shifting digital holography,” Opt. Lett. 23, 1221–1223, (1998).
[12] F. Charrière, J. Kühn, and T. Colomb, “Characterization of microlenses by digital holographic microscopy,” Appl. Opt. 45, 829-835 (2006).
[13] B. Calin, L. Preda, F. Jipa, and M. Zamfirescu, “Laser fabrication of diffractive optical elements based on detour-phase computer-generated holograms for two-dimensional Airy beams,’’ Appl. Opt. 57, 1367-1372 (2018)
[14] T. Yasuda, M. Kitamura, M. Watanabe, M. Tsumuta, T. Yamaguchi and H. Yoshikawa, “Computer simulation of reconstructed image for Computer-Generated Holograms,’’ Practical Holography XXIII, San Jose, California, United States (2009)
[15] R. Berlich, D. Richter, M. Richardson, and S. Nolte, “Fabrication of computer-generated holograms using femtosecond laser direct writing,” Opt. Lett. 41, 1752-1755 (2016).
[16] Y. Im, W. Moon, J. Roh, H. Kim, and J. Hahn, “Direct laser writing of computer-generated hologram using pulse laser system,” Imaging and Applied Optics, Seattle, Washington United States (2014).
[17] J. Su, X. Yan, Y. Huang, Y. Chen, and X. Jiang, “Resolution matching in laser direct printing of a computer-generated hologram” J. Opt. Soc. Am. B 34, B1-B8 (2017).
[18] M. C. King, A. M. Noll, and D. H. Berry, “A New Approach to Computer-Generated Holography,’’ Appl. Opt. 9, 471-475 (1970)
[19] M. Yamaguchi, N. Ohyama, T. Honda, “Holographic 3-D Printer,’’ Practical Holography IV, Los Angeles, California (1990)
[20] S. Maruyama, Y. Ono, M. Yamaguchi, “High-density recording of full-color full-parallax holographic stereogram,’’ Practical Holography XXII, San Jose, California, United States (2008)
[21] T. Utsugi and M. Yamaguchi, “Reduction of the recorded speckle noise in holographic 3D printer,’’ Opt. Express 21, 662-574 (2013)
[22] L. Cao, Z. Wang, H. Zhang, G. Jin and C. Gu, “Volume holographic printing using unconventional angular multiplexing for three-dimensional display,’’ Appl. Opt. 55, 6046-6051 (2016)
[23] J. Su, X. Yan, Y. Huang, X. Jiang, Y. Chen and T. Zhang, “Progress in the Synthetic Holographic Stereogram Printing Technique,’’ Appl. Sci. 8, 851 (2018)
[24] Y. Huang, K. Zhao, C. Pei, X. Yan, and X. Jiang, “Method for choosing angle of reference beam in computer-generated holograms based on spatial frequency analysis of principle fringe pattern,” Acta Photon. Sin. 44, 0209001 (2015).
[25] J. MIAO, X. DING, S. ZHOU and C. GUI, “Fabrication of Dynamic Holograms on Polymer Surface by Direct Laser Writing for High-Security Anti-Counterfeit Applications,” IEEE Access 7, 142926-142933 (2019)