簡易檢索 / 詳目顯示

研究生: 陳品光
論文名稱: 增強型及負電容閘極之氮化鎵-基高功率元件研究
The study of GaN-Based with Enhancement-mode and negative capacitor integration for power application
指導教授: 李敏鴻
Lee, Min-Hung
學位類別: 碩士
Master
系所名稱: 光電工程研究所
Graduate Institute of Electro-Optical Engineering
論文出版年: 2013
畢業學年度: 101
語文別: 中文
論文頁數: 70
中文關鍵詞: 氮化鎵負電容增強型
英文關鍵詞: GaN, negative capacitor, Enhancement-mode
論文種類: 學術論文
相關次數: 點閱:244下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 近年來地球暖化造成氣候變遷,使得節能方面的議題備受重視,Hybrid複合式電動車被視為減緩石油消耗提升能源使用效率的產品,然而在高電壓的驅動下,傳統的電晶體已無法滿足這類的需求,發展高電壓及高轉換效率的電晶體近年來相當熱門。
    由於氮化鎵材料耐高溫及耐腐蝕特性且電性方面氮化鎵的高電子遷移率(~1500 cm2/V-s) ,3.4 eV的寬能隙(wide bandgap)、5 MV/cm的高崩潰電壓(high breakdown voltage)等優良特性,近年來被廣泛應用在高功率元件(High Power Device)被視為取代傳統矽基IGBT。
    我們提出四元結構(In、Al、Ga、N)阻障層,調整能障高度,成功製作出增強型金氧半氮化鎵電晶體得到臨界電壓(threshold voltage) Vth=0.65V為通道常關(normally-off)的操作,飽和電流約40 mA/mm操作在VGS=4V 且 VDS=10V時,元件線寬為LG=15m且 LGD=20m。此外,在已完成的氮化鎵電晶體整合負電容材料改善次臨界擺幅、轉導(transconductance)與通道電導(channel conductance),並利用AFM (Atomic Force Microscope)、XRD、RSM(Reciprocal space mapping)及TEM(Transmission Electron Microscopy)等進行材料分析。

    In recent years, global warming caused by climate change, making the issue of energy efficiency has attracted increasing attention, Hybrid hybrid electric vehicle is deemed to slow oil consumption increase energy efficiency of products, but in the high-voltage driver, the traditional transistors have been unable to to meet such needs, the development of high voltage and high conversion efficiency of transistors very popular in recent years.
    Owing to GaN high temperature and corrosion resistant materials and electrical properties, GaN high electron mobility (~ 1500 cm2/Vs), 3.4 eV wide bandgap (wide bandgap), 5 MV / cm high breakdown voltage (high breakdown voltage) and other fine features, in recent years, is widely used in High Power Device. GaN-based power devices have been expected to replace conventional Si-based IGBT (Insulated Gate Bipolar Transistor).
    We propose four quaternary structures (In, Al, Ga, N) barrier layer, adjust the barrier height, The quaternary InAlGaN-barrier GaN MOS-HEMT with enhancement-mode operation was demonstrated. The MOS-HEMT with LG=15m and LGD=20m has Vth=0.65V and maximum drain current 40 mA/mm at VDS=10V. In addition, integrate negative capacitance material with GaN transistors improvement subthreshold swing, transconductance and channel conductance, and using AFM (Atomic Force Microscope), XRD, RSM (Reciprocal space mapping ) and TEM (Transmission Electron Microscopy), etc. material Analysis.

    Publication List I 中文摘要 III 英文摘要 IV 圖目錄 VI 表目錄 XI 致謝 XII 目錄 XIII 第一章 緒論 1-1.前言 1 1-2. GaN材料特性簡介 3 第二章 文獻回顧-Enhance-mode GaN HEMT 高功率元件製作 2-1. Threshold Voltage 原理 11 2-2. 提升Vt相關技術 12 2-2.1. 磊晶結構改善 12 2-2.2. 蝕刻閘極溝槽(Gate recess) 14 2-2.3. 高功函數閘極電極(High Work Function Schottky Gate) 18 2-2.4. 覆蓋P型層 20 2-2.5. (F-)離子電漿處理 22 第三章 GaN 高功率元件設計及製作 3-1.磊晶結構 23 3-2.光罩設計 26 3-3.Wafer Clean 29 3-4. Mesa Isolation 29 3-5. S/D Ohmic Contact 31 3-6. Higk-κ製作 32 第四章 Depletion-mode (D-mode) 元件電性量測與材料分析 4-1.元件結構與材料分析 34 4-2.元件製作流程 37 4-3.電性量測與分析 41 4-4.負電容閘極整合 44 第五章 Enhancement-mode (E-mode) 元件電性量測與材料分析 5-1.元件結構與材料分析 46 5-2.元件製作流程 48 第六章 結論與未來工作 6-1. 結論 50 6-2. 基板轉移改善散熱及提升可靠度 51 6-3. 磊晶結構最佳化 52 6-4. 崩潰電壓的提升 54 參考文獻 57 附錄 70

    [1] Nariaki Ikeda, Jiang Li, and Seikoh Yoshida,” Normally-off operation power AlGaN/GaN HFET,” Power Semiconductor Devices and ICs, 2004. Proceedings. ISPSD '04. The 16th International Symposium on, pp.369-372, 24-27 May 2004
    [2] Tatsuo Morita, Satoshi Tamura, Yoshiharu Anda, Masahiro Ishida,Yasuhiro Uemoto, Tetsuzo Ueda, Tsuyoshi Tanaka, and Daisuke Ueda,” 99.3% Efficiency of Three-Phase Inverter for Motor Drive Using GaN-based Gate Injection Transistors,” Applied Power Electronics Conference and Exposition (APEC), 2011 Twenty-Sixth Annual IEEE, pp.481-484, 6-11 March 2011
    [3] T.P. Chow, V. Khemka, J. Fedison, N. Ramungul, K. Matocha, Y. Tang, and R.J. Gutmann,” SiC and GaN bipolar power devices,” Solid-State Electronics, vol 44, no 2, pp.277–301, 1 February 2000
    [4] Masakazu Kanechika, Tsutomu Uesugi, and Tetsu Kachi, “Advanced SiC and GaN Power Electronics for Automotive Systems, ” Electron Devices Meeting (IEDM), 2010 IEEE International., pp. 324-327, 2010.
    [5] http://www.tf.uni-kiel.de/matwis/amat/semi_en/kap_5/
    backbone/r5_1_4.html
    [6] B. J. Baliga, Power Semiconductor Devices, PWS publishing Co., Boston,USA, 1995
    [7] Steven BOEYKENS, DEVELOPMENT OF GaN/SiC COMPONENTS FOR POWER APPLICATIONS, imec, 2006
    [8] O. Ambacher, J. Smart, J. R. Shealy, N. G. Weimann, K. Chu, M. Murphy,W. J. Schaff, L. F. Eastman, R. Dimitrov, L. Wittmer, M. Stutzmann, W. Rieger, and J. Hilsenbeck, "Two-dimensional electron gases induced by spontaneous and piezoelectric polarization charges in N- and Ga-face AlGaN/GaN heterostructures,“ Journal of Applied Physics, vol. 85, no. 6, MARCH 1999, pp.3222-3233

    [9] J. Derluyn, S. Boeykens, K. Cheng, R. Vandersmissen, J. Das, W. Ruythooren, S. Degroote, M. R. Leys, M. Germain, and G. Borghs, “Improvement of AlGaN/GaN high electron mobility transistor structures by in situ deposition of a Si3N4 surface layer, ” Journal of Applied Physics, Vol. 98 ,no. 5 , SEPTEMBER 2005, pp. 054501-1-054501-5
    [10] Kiyoshi Takahashi, Akihiko Yoshikawa, Adarsh Sandhu, Wide Bandgap Semiconductors: Fundamental Properties and Modern Photonic and Electronic Devices, New York, USA, Springer, 2007,pp.235
    [11] J. Kuzmik, “ Power Electronics on InAlN/(In)GAN: Prospect for a record performance” , IEEE Electron Device Lett., vol. 22, no. 114, pp. 510-512, 2001
    [12] J. Wu, W. Walukiewicz, K.M. Yu, J.W. Ager, S.X. Li, E.E. Haller, H. Lu, and W.J. Schaff, “Universal bandgap bowing in group-III nitride alloys” , Solid State Communications. vol. 127, no. 6, pp. 411-414, 2003
    [13] O. Ambacher, “Growth and applications of group III-Nitrides”, J. Phys. D:Appl. Phys. vol. 31, pp. 2653-2710, 1998
    [14] W.S. Chen, S.J. Chang,, Y.K. Su, R.L. Wang, C.H. Kuo, and S.C. Shei, “AlxGa1xN/GaN heterostructure field effect transistors with various Al mole fractions in AlGaN barrier,” Journal of Crystal Growth, Volume 275, pp. 398–403, March 2005
    [15] Yong Cai, Yugang Zhou, Kei May Lau, and Kevin J. Chen, “Control of Threshold Voltage of AlGaN/GaN HEMTs by Fluoride-Based Plasma Treatment:From Depletion Mode to Enhancement Mode,” IEEE Transactions On Electron Devices, vol. 53, no.9, pp.2207-2215, SEPTEMBER 2006
    [16] Yasuhiro Uemoto, Masahiro Hikita, Hiroaki Ueno, Hisayoshi Matsuo, and Hidetoshi Ishida, “Gate Injection Transistor (GIT)—A Normally-Off AlGaN/GaN Power Transistor Using Conductivity Modulation, ” IEEE Transactions On Electron Devices, vol. 54, no.12, pp.3393-3399, DECEMBER 2007
    [17] Tadjer. M.J., Mastro. M.A., Hite. J.K., Hobart. K.D., Eddy. C.R., and Kub. F.J., “An AlN/Ultrathin AlGaN/GaN HEMT Structure for Enhancement-Mode Operation Using Selective Etching,” IEEE Electron Device Lett., vol. 30, no. 12, pp. 1251-1253, February, Dec. 2009
    [18] Ohki,T., Kikkawa,T., Imanishi,K., Imada,T., Yamada,A., and Hara,N., “Enhancement-Mode GaN MIS-HEMTs With n-GaN/i-AlN/n-GaN Triple Cap Layer and High- k Gate Dielectrics,” IEEE Electron Device Lett., vol. 31, no. 3, pp. 189-191, March 2010
    [19]Guowang Li, Tom Zimmermann, Yu Cao, Chuanxin Lian, Xiu Xing, Ronghua Wang, Patrick Fay, Huili Grace Xing and Debdeep Jena," Threshold Voltage Control in Al0.72Ga0.28N/AlN/GaN HEMTs by Work-Function Engineering,” IEEE Electron Device Lett., vol. 31, no. 9, pp. 954-956, SEPTEMBER 2010
    [20] A. Endoh, Y. Yamashita, K. Ikeda, M. Higashiwaki, K. Hikosaka, T. Matsui, S.Hiyamizu, and T. Mimura, “Non-recessed gate enhancement-mode AlGaN/GaN high electron mobility transistors with high RF Performance,” Jpn. J. Appl.Phys., vol. 43, no. 4B, pp. 2255-2258, 2004
    [21] S. Lawrence Selvaraj, Arata Watanabe, Akio Wakejima and Takashi Egawa, “ 1.4 kV breakdown voltage for MOCVD grown AlGaN/GaN HEMTs on Si substrate, ” Device Research Conference (DRC), 2012 70th Annual, pp.53-54,2012
    [22] http://rubicon-es2.com/index.php
    [23] http://www.ntt-at.com/
    [24] F. A. Ponce, “Group III Nitride Semiconductor Compounds Physics and Applications”, Oxford University Press, pp.123-133, 1998
    [25] M. Miyoshi, H. Ishikawa, T. Egawa, K. Asai, M. Mouri, T. Shibata, M. Tanaka, and O. Oda,“ High-electron-mobility AlGaN∕AlN∕GaN heterostructures grown on 100-mmdiam epitaxial AlN/sapphire templates by metalorganic vapor phase epitaxy, ” Applied Physics Letters, vol 85, pp.1710-1712, 2004
    [26] Takashi Egawa, “ Heteroepitaxial growth and power electronics using AlGaN/GaN HEMT on Si, ”Electron Devices Meeting (IEDM), 2012 IEEE International, pp.27.1.1-27.1.4
    [27]Jong-Soo Lee, A. Vescan, A. Wieszt, R. Dietrich, H. Leier, and Young-Se Kwon, “Characteristics of AlGaN/GaN HEMT Devices with SiN Passivation, ” Electron Devices Meeting (IEDM), 2000 IEEE International, pp. 381-384, 2000
    [28] Naoya Okamoto, Katsuyuki Hoshino, Naoki Hara, Masahiko Takikawa and Yasuhiko Arakawa,” MOCVD-grown InGaN-channel HEMT structures with electron mobility of over 1000 cm2/Vs,” Journal of Crystal Growth, vol 272, pp. 278–284, December 2004,
    [29]Y.H.Chang, H.C.Chiu, W.H.Chang, J.Kwo, C.C.Tsai, and J.M.Hong, M.Hong,“GaN metal-oxide-semiconductor diodes with molecular beam epitaxy-Al2O3 as a template followed by atomic layer deposition growth, ” Journal of Crystal Growth, vol. 311, no. 7, pp. 2084-2086, March 2009
    [20]Huang, W. , and Chow, T.P. , “Monolithic High-Voltage GaN MOSFET/Schottky Pair with Reverse Blocking Capability , ”Power Semiconductor Devices and IC's, 2007. ISPSD '07. 19th International Symposium on, pp. 265 – 268, 27-31 May 2007
    [30] Jaehoon Park , Ayse M. Ozbek, Lei Ma, Matthew T. Veety, Michael P. Morgensen, Douglas W. Barlage, Virginia D. Wheeler, and Mark A.L. Johnson , “An analytical model of source injection for N-type enhancement mode GaN-based Schottky Source/Drain MOSFET’s with experimental demonstration, ”Solid-State Electronics, vol. 54, no. 12, pp 1680–1685, December 2010
    [31] X. A. Cao, S. J. Pearton, G. T. Dang, A. P. Zhang, F. Ren, R. G. Wilson, and J. M. Van Hove, “Creation of high resistivity GaN by implantation of Ti, O, Fe, or Cr, ” Journal of Applied Physics, Vol. 87, no. 3 , 2000, pp. 1091-1095
    [32] Hyung-Seok Lee, Dong Seup Lee, Tomas Palacios, “AlGaN/GaN High-Electron-Mobility Transistors Fabricated Through a Au-Free Technology, ” IEEE ELECTRON DEVICE LETTERS, vol. 32, no. 5, pp.623-625, MAY 2011
    [33] Ryuusuke Nakasaki, Tamotsu Hashizume, and Hideki Hasegawa,“ Insulator-GaN interface structures formed by plasma-assisted chemical vapor deposition, ” Physica E: Low-dimensional Systems and Nanostructures, vol. 7, no, 3–4, pp. 953–957, May 2000
    [34] Ki-Won Kim, Sung-Dal Jung, Dong-Seok Kim, Hee-Sung Kang, Ki-Sik Im, Jae-Joon Oh, Jong-Bong Ha, Jai-Kwang Shin, and Jung-Hee Lee, “ Effects of TMAH Treatment on Device Performance of Normally Off Al2O3/GaN MOSFET, ” IEEE Electron Device Lett., vol. 32, no. 101, pp. 1376-1378, OCTOBER 201
    [35] Nidhi, Sansaptak Dasgupta, David F. Brown, Stacia Keller, James S. Speck, and Umesh K. Mishra, “N-polar GaN-based highly scaled self-aligned MIS-HEMTs with state-of-the-art fT.LG product of 16.8 GHz-μm, ” Electron Devices Meeting (IEDM), 2009 IEEE International, p. 955, 2009
    [36] Xinke Liu, Bin Liu, Edwin Kim Fong Low, Hock-Chun Chin, Wei Liu, Mingchu Yang, Leng Seow Tan, and Yee-Chia Yeo, “ Diamond-Like Carbon (DLC) Liner with Highly Compressive Stress formed on AlGaN/GaN MOS-HEMTs with in situ Silane Surface Passivation for Performance Enhancement, ” Electron Devices Meeting (IEDM), 2010 IEEE International, S11P3, 2010
    [37] R. Therrien, S. Singhal, J.W. Johnson, W. Nagy, R. Borges, A. Chaudhari, A.W. Hanson,A. Edwards, J. Marquart, P. Rajagopal, C. Park, I.C. Kizilyalli, and K.J. Linthicum, “A 36mm GaN-on-Si HFET Producing 368W at 60V with 70% Drain Efficiency, ” Electron Devices Meeting (IEDM), 2005 IEEE International, p. 568, 2005
    [38] M. Kanamura, T. Kikkawa, T. Iwai, K. Imanishi, T. Kubo and K. Joshin, “An Over 100 W n-GaN/n-AlGaN/GaN MIS-HEMT Power Amplifier for Wireless Base Station Applications, ” Electron Devices Meeting (IEDM), 2005 IEEE International, p. 572, 2005
    [39] C. S. Suh, Y. Dora, N. Fichtenbaum, L. McCarthy, S. Keller, and U. K. Mishra, “ High-Breakdown Enhancement-Mode AlGaN/GaN HEMTs with Integrated Slant Field-Plate, ” Electron Devices Meeting (IEDM), 2006 IEEE International, S35P3, 2006
    [40] Yuji Ando, Akio Wakejima, Yasuhiro Okamoto, Tatsuo Nakayama, Kazuki Ota, Katsumi Yamanoguchi, Yasuhiro Murase, Kensuke Kasahara, Kohji Matsunaga, Takashi Inoue, and Hironobu Miyamoto, “Novel AlGaN/GaN Dual-Field-Plate FET With High Gain, Increased Linearity and Stability, ” Electron Devices Meeting (IEDM), 2005 IEEE International, p. 576, 2005
    [41] Keon Jae Lee, Matthew A. Meitl, Jong-Hyun Ahn, John A. Rogers, and Ralph G. Nuzzo, “Bendable GaN high electron mobility transistors on plastic substrates, ” J. Appl. Phys., vol. 100 , no. 12 , DEVICE PHYSICS, December 2006.
    [42] L. Shen, S. Heikman, B. Moran, R. Coffie, N.-Q. Zhang, D. Buttari, I. P. Smorchkova, S. Keller, S. P. DenBaars, and U. K. Mishra, “ AlGaN/AlN/GaN High-Power Microwave HEMT,” IEEE Electron Device Lett., vol. 22, no. 10, pp.457-459, OCTOBER 2001
    [43] A. Pérez-Tomás, M. Placidi, N. Baron, S. Chenot, Y. Cordier, J. C. Moreno, A. Constant, P. Godignon, and J. Millán, “ GaN transistor characteristics at elevated temperatures,” Journal of Applied Physics , vol. 106 , no. 7, pp.369-372, 2009
    [44] M. Miyoshi, H. Ishikawa, T. Egawa, K. Asai, M. Mouri, T. Shibata, M. Tanaka, and O. Oda, “ High-electron-mobility AlGaN∕AlN∕GaN heterostructures grown on 100-mm-diam epitaxial AlN/sapphire templates by metalorganic vapor phase epitaxy,” Applied Physics Letters , vol. 85 , no. 10, pp.1710-1712, OCTOBER 2004
    [45] Wen-Kai Wang, Po-Chen Lin, Ching-Huao Lin, Cheng-Kuo Lin, Yi-Jen Chan, Guan-Ting Chen, and Jen-Inn Chyi, “ Performance Enhancement by Using the n+-GaN Cap Layer and Gate Recess Technology on the AlGaN–GaN HEMT Fabrication,” IEEE Electron Device Lett., vol. 26,no. 1, pp.5-7, JANUARY 2005

    [46] Daisuke Ueda, Tomohiro Murata, Masahiro Hikita, Satoshi Nakazawa, Masayuki Kuroda, Hidetoshi Ishida, Manabu Yanagihara, Kaoru Inoue, Tetsuzo Ueda, Yasuhiro Uemoto, Tsuyoshi Tanaka, and Takashi Egawa, “AlGaN/GaN Devices for Future Power Switching Systems , ” Electron Devices Meeting (IEDM), 2005 IEEE International, S15P5, 2005
    [47] Y.-F. Wu, A. Saxler, M. Moore, R. P. Smith, S. Sheppard, P. M. Chavarkar, T. Wisleder, U. K. Mishra, and P. Parikh, “ 30-W/mm GaN HEMTs by Field Plate Optimization, ” IEEE Electron Device Lett., vol. 25, no. 3, pp.117-119, MARCH 2004
    [48] Masaaki Kuzuhara, “ GaN-based electronics, ”ASDAM 2012, The Ninth International Conference on Advanced Semiconductor Devices and Microsystems, November 11–15, 2012, Smolenice, Slovakia
    [49] Wataru Saito, Tomohiro Nitta, Yorito Kakiuchi, Yasunobu Saito, Kunio Tsuda, Ichiro Omura, and Masakazu Yamaguchi, ” Suppression of Dynamic On-Resistance Increase and Gate Charge Measurements in High-Voltage GaN-HEMTs With Optimized Field-Plate Structure, ” IEEE Transactions On Electron Devices, vol. 54, no. 8, pp.1825-1830, AUGUST 2007

    無法下載圖示 本全文未授權公開
    QR CODE