簡易檢索 / 詳目顯示

研究生: 吳思賢
Sih-Shian Wu
論文名稱: 石墨烯複合導電奈米纖維應用於超級電容之製作
Fabrication of supercapacitors using Graphene / conductive nanofibers electrodes
指導教授: 張天立
Chang, Tien-Li
楊啟榮
Yang, Chii-Rong
學位類別: 碩士
Master
系所名稱: 機電工程學系
Department of Mechatronic Engineering
論文出版年: 2014
畢業學年度: 102
語文別: 中文
論文頁數: 125
中文關鍵詞: 靜電紡絲技術靜電噴霧技術超級電容奈米纖維石墨烯聚苯胺
英文關鍵詞: electrospinning, electrospray, supercapacitor, nanofibers, Graphene, polyaniline (PANi)
論文種類: 學術論文
相關次數: 點閱:419下載:9
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本研究是利用靜電紡絲(Electrospinning)與靜電噴霧(Electrospray)技術在不鏽鋼纖維收集器表面,製備與複合導電奈米石墨烯(Graphene)纖維之超級電容電雙層電極。藉由奈米纖維之高比表面積(High specific surface area)與Graphene材料之高電容量(High-capacity),以提升整體比電容值。首先,本研究是將高分子聚苯乙烯(Polystyrene, PS)與導電高分子聚苯胺(Polyaniline, PANi)複合成導電高分子溶液,以作為靜電紡絲之基底材料,藉由靜電紡絲技術將導電高分子噴射成奈米纖維至不鏽鋼基板,形成高比表面積之電極;接著利用分散於N-甲基吡咯烷酮(N-methyl-2-pyrrolidone, NMP)溶劑的Graphene溶液,以靜電噴霧噴灑出霧狀液珠,使電極表面附著Graphene,以增加其電容量;將兩塊對襯之電極中間放置隔離膜浸入5.5 M KOH電解液中並完成元件封裝,並以循環伏安法之元件性能評估。本研究製備出之PS:PANi導電奈米纖維其平均電阻值約4.4 M 歐姆,導電率約為27 uS/cm,並在2.5 V時成功地點亮紅色LED。此外,在奈米纖維上噴灑Graphene,並透過拉曼光譜分析該材料的D band、G band與2D band峰值,表示利用本研究的電噴霧技術已具備將Graphene噴灑於奈米纖維表面之能力。此外,並以循環伏安法分析具PS:PANi:Graphene電極的超級電容,該電流與電壓之掃描圖形面積可大幅增加,顯示充放電能力相當優異。經計算後PS nanofiber、PS:PANi nanofiber、PS:Graphene nanofiber與PS:PANi:Grapene nanofiber四種電極的比電容值,分別為14.83 F/g、51 F/g、60.38 F/g、133.33 F/g。實驗結果顯示,結合PS奈米纖維的高比表面積、PANi的導電性與Graphene高電容量等優點之電極,可提升整體電容器之性能。

    In this study, the electrospinning and electrospray techniques are used to prepare for Graphene/conductive nanofibers on the stainless steel plate as the supercapacitors where the nanofibers act as the current collector and electrodes of electrical double-layer. Due to the conductive nanofibers with high specific surface area and Graphene (G) with high capacitance, the overall specific capacitance of the capacitor can be increased. Firstly, the polystyrene (PS) and polyaniline (PANi) are mixed as a conductive polymer solution, which is electrospun as nanofibers on the stainless steel plate and form electrodes with high specific surfaces. To increase the capacity of a capacitor, the Graphene dispersed in N-methyl-2-pyrrolidone (NMP) solvent is electrosprayed on the surface of the nanofibers. The pair of electrodes and membrane separator can be assembled together and then the aqueous 5.5 M KOH electrolyte is dropped and sealed in the capacitor. Finally, the supercapacitors are tested by cyclic voltammetry for the values of performance. The average resistance and electrical conductivity of conductive PS:PANi nanofibers are 4.4 M ohm and 27 uS/cm, respectively. The red LED is illuminated with conductive nanofibers as the connecting wire at 2.5 V. By the Raman spectra measurement, the D band, G band and 2D band are obtained in PS:G and PS:PANi:G electrodes. It indicates the Graphene is sprayed on the surface of the nanofibers. The scanning area of current and voltage can be increased significantly in the capacitor with PS:PANi:G electrodes, the calculated specific capacitances (F/g) are 14.83 (PS), 51 (PS:PANi), 60.38 (PS:G), and 133.33 (PS:PANi:G) under various nanofibers electrodes, respectively. The results demonstrate that the combination of conductive PS:PANi nanofibers and Graphene with high capacitance can improve the performance of overall supercapacitors.

    摘要 I Abstract II 總目錄 III 表目錄 VI 圖目錄 VII 第一章 緒論 1 1.1 前言 1 1.2 靜電紡絲技術簡介 2 1.3 導電高分子簡介 5 1.4 導電奈米纖維簡介與應用發展 6 1.5 超級電容簡介與應用發展 8 1.6 研究動機與目的 10 1.7 論文架構 11 第二章 文獻回顧與理論探討 12 2.1 奈米纖維製備技術分類 12 2.1.1 抽絲法 13 2.1.2 模板法 13 2.1.3 高分子自組裝法 13 2.1.4萃取提煉法 14 2.1.5 細菌培養法 14 2.2 靜電紡絲技術 15 2.2.1 靜電紡基本原理 16 2.2.2 影響靜電紡絲纖維成形之因素 17 2.3 靜電紡絲技術之相關應用 28 2.4 導電高分子 39 2.4.1 導電高分子原理 41 2.4.2 聚苯胺之導電高分子 43 2.4.3 聚苯胺之酸摻雜 45 2.5 石墨烯 47 2.6 超級電容 50 2.6.1 超級電容器之電極材料 52 2.6.2 超級電容器之電解液 53 2.6.3 電容特性及電容值評估 54 2.7 靜電紡絲技術與超級電容之相關應用 55 第三章 實驗設計與規劃 63 3.1 實驗設計 63 3.2 實驗規劃 67 3.3 實驗與檢測設備 71 第四章 實驗結果與討論 77 4.1奈米纖維之製作 77 4.1.1操作電壓對奈米纖維之影響 77 4.1.2溶液濃度對奈米纖維之影響 77 4.2導電奈米纖維之製作 82 4.2.1溶液濃度對導電奈米纖維之影響 82 4.2.2溶液分散性對導電奈米纖維之影響 89 4.2.3導電奈米纖維之性能量測 93 4.3石墨烯複合導電奈米纖維之製作 97 4.3.1靜電噴霧沉積之石墨烯形貌分析 97 4.3.2靜電噴霧沉積之石墨烯拉曼光譜分析 100 4.3.3石墨烯複合導電奈米纖維之性能量測與評估 105 4.4 EDLC之元件組裝 109 4.5超級電容之循環伏安法性能量測 111 第五章 結論與未來展望 117 5.1結論 117 5.2未來展望 118 參考文獻 119

    [1]. Z. M. Huang, Y. Z. Zhang, M. Kotaki, et al. "A review on polymer nanofibers by electrospinning and their applications in nanocomposites" Composites science and technology, vol. 63, pp. 2223-2253 (2003).
    [2]. H. Wu, D. Kong, Z. Ruan, et al. "A transparent electrode based on a metal nanotrough network" Nat nanotechnol, vol. 8, pp. 421-425 (2013).
    [3]. N. G. Rim, C. S. Shin and H. Shin "Current approaches to electrospun nanofibers for tissue engineering" Biomedical materials, vol. 8, pp. 14102-14116 (2013).
    [4]. L. Jiang, Y. Zhao and J. Zhai "A lotus-leaf-like superhydrophobic surface: a porous microsphere/nanofiber composite film prepared by electrohydrodynamics" Angewandte chemie, vol. 43, pp. 4338-4341 (2004).
    [5]. X. Wang, B. Ding, J. Yu, et al. "Engineering biomimetic superhydrophobic surfaces of electrospun nanomaterials" Nano today, vol. 6, pp. 510-530 (2011).
    [6]. J. H. Burroughes, D. D. C. Bradley, A. R. Brown, et al. "Light-emitting diodes based on conjugated polymers" Letter to nature, vol. 347, pp. 539-541 (1990).
    [7]. http://www.polymersolutions.com/blog/demand-grows-for-conductive-polymers/
    [8]. H. Lin, L. Li, J. Ren, et al. "Conducting polymer composite film incorporated with aligned carbon nanotubes for transparent, flexible and efficient supercapacitor" Scientific reports, vol. 3, pp. 1353-1359 (2013).
    [9]. http://www.staticworx.com/
    [10]. http://www.mujjo.com/
    [11]. http://www.giichinese.com.tw/publisher/sne.shtml/
    [12]. E. J. Ra, E. Raymundo-Piñero, Y. H. Lee, et al. "High power supercapacitors using polyacrylonitrile-based carbon nanofiber paper" Carbon, vol. 47, pp. 2984-2992 (2009).
    [13]. C. A. Amarnath, J. Chang, J. Lee, et al. "Direct polymerized polyaniline nanostructures on modified indium-tin oxide surface for electrochemical supercapacitors" Electrochemical and Solid-state letters, vol. 11, pp. 167-169 (2008).
    [14]. H. E. Jeong, S. H. Lee, P. Kim, et al. "Stretched polymer nanohairs by nanodrawing" Nano letters, vol. 6, pp. 1508-1513 (2006).
    [15]. S. Tao and T. Desai. "Aligned arrays of biodegradable poly(-caprolactone) nanowires and nanofibers by template synthesis" Nano letters, vol. 7, pp. 1463-1468 (2007).
    [16]. J. D. Hartgerink, E. Beniash and S. I. Stupp "Self-assembly and mineralization of peptide-amphiphile nanofibers" Science, vol. 294, pp. 1684-1688 (2001).
    [17]. G. SIilva, C. Czeisler, K. Niece, et al. "Selective differentiation of neural progenitor cells by high–epitope density nanofibers" Science, vol. 303, pp. 1352-1355 (2004).
    [18]. P. Ross, R. Mayer and M. Benziman. "Cellulose biosynthesis and function in bacteria" Microbiological, vol. 55, pp. 35-58 (1991).
    [19]. G. G. Wallace, M. J. Higgins, S. E. Moulton, et al. "Nanobionics: the impact of nanotechnology on implantable medical bionic devices" Nanoscale, vol. 4, pp. 4327-4347 (2012).
    [20]. A. Formhals, “Artificial thread and method of producing same” U.S. Patent 2,187,306, Application, July, 28 (1937).
    [21]. A. Formhals, “Method and apparatus for spinning” U.S. Patent 2,160,962, Application, July, 01 (1936).
    [22]. A. Formhals, “Process and apparatus for preparing artificial threads” U.S. Patent 1,975,504, Application, March, 23 (1934).
    [23]. G. Taylor "Disintegration of water drops in an electric field" Proceedings of the royal society A: mathematical, physical and engineering sciences, vol. 280, pp. 383-397 (1964).
    [24]. S. Blonski, A. Blasinska and T.A. Kowalewski. "Electrospinning of liquid jets" Mechanics, pp. 15-21, Warsaw, Poland, (2004).
    [25]. A. Koski, K. Yim and S. Shivkumar "Effect of molecular weight on fibrous PVA produced by electrospinning" Materials Letters, vol. 58, pp. 493-497 (2004).
    [26]. S. Megelski, J. Stephens, D. Chase, et al. "micro- and nanostructured Surface morphology on electrospun polymer fibers" Macromolecules, vol. 35, pp. 8456-8466 (2002).
    [27]. X. Yuan, Y. Zhang, C. Dong, et al. "Morphology of ultrafine polysulfone fibers prepared by electrospinning" Polymer international, vol. 53, pp. 1704-1710 (2004).
    [28]. H. Fong, I. Chun and D. H. Reneker. "Beaded nanofibers formed during electrospinning" Polymer, vol. 40, pp. 4585-4592 (1999).
    [29]. D. H. Reneker, A. L. Yarin, H. Fong, et al. "Bending instability of electrically charged liquid jets of polymer solutions in electrospinning" Journal of applied physics, vol. 87, pp. 4531-4547 (2000).
    [30]. K. K. Lee, H. Y. Kim, Y. J. Ryu, et al. "Mechanical behavior of electrospun fiber mats of poly(vinyl chloride)/polyurethane polyblends" Journal of polymer science: part B: polymer physics, vol. 41, pp. 1256-1262 (2003).
    [31]. K. Lee, H. Kim, H. J. Bang, et al. "The change of bead morphology formed on electrospun polystyrene fibers" Polymer, vol. 44, pp. 4029-4034 (2003).
    [32]. L. Wannatong, A. Sirivat and P. Supaphol "Effects of solvents on electrospun polymeric fibers: preliminary study on polystyrene" Polymer international, vol. 53, pp. 1851-1859 (2004).
    [33]. C. Buchko, L. Chen, Y. Shen, et al. "Processing and microstructural characterization of porous biocompatible protein polymer thin films" Polymer, vol. 40, pp. 7397-7407 (1999).
    [34]. K. H. Lee, H. Y. Kim, Y. M. La, et al. "Influence of a mixing solvent with tetrahydrofuran and N,N-dimethylformamide on electrospun poly(vinyl chloride) nonwoven mats" Journal of polymer science part B: polymer physics, vol. 40, pp. 2259-2268 (2002).
    [35]. 吳大誠、杜仲良、高緒珊, "奈米纖維" 五南書局 (2004).
    [36]. C. Wang, Y. Li, G. Ding, et al. "Preparation and characterization of graphene oxide/poly(vinyl alcohol) composite nanofibers via electrospinning" Journal of applied polymer science, vol. 127, pp. 3026-3032 (2013).
    [37]. D. Zhang and J. Chang, "Electrospinning of three-dimensional nanofibrous tubes with controllable architectures" Nano letters, vol. 8, pp. 3283-3287 (2008).
    [38]. Y. K. Fuh and L. C. Lien "Pattern transfer of aligned metal nano/microwires as flexible transparent electrodes using an electrospun nanofiber template" Nanotechnology, vol. 24, pp. 55301-55308 (2013).
    [39]. Y. Zhu, J. Zhang, Y. Zheng, et al. "Stable, superhydrophobic, and conductive polyaniline/polystyrene films for corrosive environments" Advanced functional materials, vol. 16, pp. 568-574 (2006).
    [40]. H. Shirakawa, E. Louis, A. Macdiarmid, et al. "Synthesis of electrically conducting organic polymers: halogen derivatives of polyacetylene, (CH)x" Journal of the Chemical Society, Chemical communications, vol. 16, pp. 1972-1995 (1977).
    [41]. K. Kanazawa, A. F. Diaz, W. D. Gill, et al. "Polypyrolle-an electochemically synthesized conducting organic polymer" Synthetic metals, vol. 1, pp. 329-336 (1979).
    [42]. http://www.britannica.com/
    [43]. B. Wessling and Z. Kessler. "Dispersion hypothesis and non-equilibrium thermodynamics key elements for a materials science of conductive polymers. A key to understanding polymer blends or other multiphase polymer system" Synthetic metals, vol. 45, pp. 119-149 (1991).
    [44]. K. S. Novoselov, A. K. Geim, S. V. Morozov, et al. "Electric field effect in atomically thin carbon films" Science, vol. 306, pp. 666-669 (2004).
    [45]. http://nobelprize.org/nobel_prizes/physics/laureates/2010/
    [46]. C. Y. Su, Graphene: The applications in optical electronics and thermal management, SumKen (2013).
    [47]. C. Lee, X. Wei, J. W. Kysar, et al. "Measurement of the elastic properties and intrinsic strength of monolayer graphene" Science, vol. 321, pp. 385-388 (2008).
    [48]. R. R. Nair, P. Blake, A. N. Grigorenko, et al. "Fine structure constant defines visual transparency of graphene" Science, vol. 320, pp. 1308-1315 (2008).
    [49]. H. Wang, Q. Hao, X. Yang, et al. "Graphene oxide doped polyaniline for supercapacitors" Electrochemistry communications, vol. 11, pp. 1158-1161 (2009).
    [50]. W. Lv, D. M. Tang, Y. B. He, et al. "Low-temperature exfoliated graphenes vacuum-promoted exfoliation and electrochemical energy storage" ACS nano, vol. 3, pp. 3730-3736 (2009).
    [51]. C. Liu, Z. Yu, D. Neff, et al. "Graphene-based supercapacitor with an ultrahigh energy density" Nano letters, vol. 10, pp. 4863-4868 (2010).
    [52]. R. Kotz and M. Carlen. "Principles and applications of electrochemical capacitors" Electrochimica acta, vol. 45, pp. 2483-2498 (2000).
    [53]. J. P. Zheng, P. J. Cygan and T. R. Jow. "Hydrous ruthenium oxide as an electrode material for electrochemical capacitors" Journal of the electrochemical society, vol. 142, pp. 2699-2703 (1995).
    [54]. B. E. Conway. "Electrochemical supercapacitors" Springer science, New York (1990).
    [55]. J. Gamby, P. L. Taberna, P. Simon, et al. "Studies and characterisations of various activated carbons used for carbon/carbon supercapacitors" Journal of power sources, vol. 101, pp. 109-116 (2001).
    [56]. C. Kim "Electrochemical characterization of electrospun activated carbon nanofibres as an electrode in supercapacitors" Journal of power sources, vol. 142, pp. 382-388 (2005).
    [57]. D. Yu and L. Dai. "Self-assembled graphene/carbon nanotube hybrid films for supercapacitors" Journal of physical chemistry letters, vol. 1, pp. 467-470 (2010).
    [58]. A. J.bard and L.R.Faulkner. "Electrochemical methods, fundamentals and applications" John Wiley & Sons, New York (1998).
    [59]. M. Ue, K. Ida and S. Mori. "Electrochemical properties of organic liquid electrolytes based on quaternary onium salts for electrical double-layer capacitors" Journal of the electrochemical society, vol. 141, pp. 2989-2996 (1994).
    [60]. L. Deng, R. J. Young, I. A. Kinloch, et al. "Supercapacitance from cellulose and carbon nanotube nanocomposite fibers" ACS applied materials & interfaces, vol. 5, pp. 9983-9990 (2013).
    [61]. P. F. Jao, K. T. Kim, G. J. Kim, et al. "Fabrication of an all SU-8 electrospun nanofiber based supercapacitor" Journal of micromechanics and microengineering, vol. 23, pp. 114011-114019 (2013).
    [62]. H. I. Joh, H. K. Song, C. H. Lee, et al. "Preparation of porous carbon nanofibers derived from graphene oxide/polyacrylonitrile composites as electrochemical electrode materials" Carbon, vol. 70, pp. 308-312 (2014).
    [63]. L. Liu, Z. Niu, L. Zhang, et al. "Nanostructured graphene composite papers for highly flexible and foldable supercapacitors" Advanced materials, vol. 10, pp. 1-8 (2014).
    [64]. S. Y. Oh, H. C. Koh, J. W. Choi, et al. "Preparation and properties of electrically conductive polyaniline-polystyrene composites by in-situ polymerization and blending" Polymer journal, vol 29, pp. 404-409 (1997).
    [65]. A. Palm. "Raman spectrum of polystyrene" The journal of chemical physics, vol. 55, pp. 1320-1324 (1951).
    [66]. H. Wang, Q. Hao, X. Yang, et al. "A nanostructured graphene/polyaniline hybrid material for supercapacitors" Nanoscale, vol. 2, pp. 2164-2170 (2010).
    [67]. S. Reich and C. Thomsen "Raman spectroscopy of graphite" Philosophical transactions of the royal Society A mathematical physical and engineering sciences, vol. 362, pp. 2271-2288 (2004).
    [68]. N. Ferralis. "Probing mechanical properties of graphene with raman spectroscopy" Journal of materials science, vol. 45, pp. 5135-5149 (2010).

    下載圖示
    QR CODE