研究生: |
游崇瑋 Chung-Wei You |
---|---|
論文名稱: |
台灣及鄰近地區鈍頭蛇屬系統分類研究 Taxonomic review of the genus Pareas (Serpentes: Pareatidae) of Taiwan and the adjacent areas. |
指導教授: |
林思民
Lin, Si-Min |
學位類別: |
碩士 Master |
系所名稱: |
生命科學系 Department of Life Science |
論文出版年: | 2011 |
畢業學年度: | 99 |
語文別: | 英文 |
論文頁數: | 40 |
中文關鍵詞: | 分類學 、系統分類學 、系統演化學 、鈍頭蛇 、隱藏種 |
英文關鍵詞: | taxonomy, systematics, phylogeny, Pareas, cryptic species |
論文種類: | 學術論文 |
相關次數: | 點閱:378 下載:25 |
分享至: |
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
鈍頭蛇科(Pareatidae)是近年由黃頷蛇科(Colubridae)中獨立的類群,由於擁有特化的食蝸食性,在生態、行為與演化上均具有高度的研究價值。在20世紀早期,Van Denburgh以及牧茂市郎先後發表台灣鈍頭蛇(Amblycephalus formosensis)以及駒井氏鈍頭蛇(A. komaii),兩者皆為台灣特有種。其後在1931年經歷了分類變革,鈍頭蛇屬的學名從原先的Amblycephalus改成Pareas。1997年,日籍學者太田英利教授認為台灣只產有一種鈍頭蛇,而根據命名法則稱作較早發表的名稱:台灣鈍頭蛇(Pareas formosensis)。然而,近來我們發現台灣的鈍頭蛇中存在著不連續的外部型態差異,顯見此類群在分類上仍有待釐清。為了探討台灣及鄰近地區鈍頭蛇的系統分類及演化關係,我們同時進行外部型態的檢測及遺傳的分析,並納入產於沖繩的八重山鈍頭蛇(P. iwasakii)進行比對。外部形值方面,我們記錄了身長各項比例、鱗脊、鱗片數量、眼色等數據。遺傳標記方面,則利用PCR增幅粒線體cytochrome b及核染色體的c-mos基因片段,並利用序列建構親緣關係樹。結果從粒線體DNA的序列中發現台灣至少存在三個遺傳上差異明顯的系群,彼此並不成為單系群。其中,台灣鈍頭蛇(P. formosensis)和漢氏鈍頭蛇(P. hamptoni)聚合為遺傳距離非常相近的一群,屬同種範圍。根據漢氏鈍頭蛇的原始描述文獻,我們發現漢氏鈍頭蛇和台灣鈍頭蛇在背部鱗片上有些許差異,據此我們建議將台灣鈍頭蛇歸於漢氏鈍頭蛇的一個亞種(P. hamptoni formosensis)。由核染色體的遺傳標記顯示台灣島內的鈍頭蛇即使處於共域分布的地區,也完全沒有任何的遺傳交流,而且三者均具備可資明顯鑑別的外部形態特徵。由於多組證據相互吻合,我們認為台灣的鈍頭蛇總共存在三個有效的分類群。比對正模標本的外部形值之後,我們認為駒井氏鈍頭蛇應該回復為一個有效種,意即,台灣目前存有三種鈍頭蛇:漢氏鈍頭蛇台灣亞種,駒井氏鈍頭蛇,以及一個未發表的隱藏種。
Pareatidae is a group of snail-eating or slug-eating snakes recently separated from Colubridae. Due to its specialized feeding habit, Pareatidae is an extremely interesting taxon in researches concerning ecology, behavior and evolutionary biology. In the early 20th century, Van Denburgh and Maki described the first and the second pareatid snakes of Taiwan as Amblycephalus formosensis and A. komaii, respectively. In 1931, the genus name was changed from Amblycephalus to Pareas. However, after an examination including museum specimens of both species, Ota (1997) concluded only one species of Pareas occurs in Taiwan, i.e., the earlier published species P. formosensis. However, discovery of some discrete morphological differences within this species in recent years indicated that taxonomy of Pareas snakes in Taiwan remains a controversial issue. In order to clarify the taxonomic status and phylogenetic relationships of Pareas snakes among Taiwan and neighboring regions, we performed morphological inspections and genetic analyses. From mtDNA cyt b tree, we found three distinct clades within Taiwanese pareatids, which do not form a monophyletic group when sequences of outgroup species were included. The genetic distances among the three Taiwanese clades are even larger than that compared to P. iwasakii or other outgroup speices. Otherwise, it was unexpected that P. formosensis grouped with P. hamptoni, and according to the original description of P. hamptoni, there are differences on dorsal scale counts between the two species, thus we suggest it to be considered a subspecies of P. hamptoni, i.e. Pareas hamptoni formosensis. The consistent tree topology between mitochondrial and nuclear markers, along with the congruence clade allocation of all individuals examined in sympatric localities indicated that there were no gene flow among different clades. In addition, all the three clades could be identified by their own morphological characteristics. Because of the multiple and consistent sets of evidences, we predicted the existence of three valid species of pareatid snakes in Taiwan. After we compared morphological data of the holotype and paratype, we consider Pareas komaii should be revived as a valid species. Conclusively, three Pareas snakes currently exist in Taiwan, including P. hamptoni formosensis, P. komaii and an undescribed cryptic species.
de Queiroz, A., Lawson, R., Lemos-Espinal, J.A., 2002. Phylogenetic relationships of North American garter snakes (Thamnophis) based on four mitochondrial genes: how much DNA is enough? Molecular Phylogenetics and Evolution. 22, 315–329.
Felsenstein, J., 1985. Confidence limits on phylogenies: an approach using the bootstrap. Evolution. 39, 783–791.
Futuyma, D. J., 2009. Evolution. Sinauer Associates, Inc., Sundaland, MA.
Grossmann, W., Tillack, F., 2003. On the taxonomic status of Asthenodipsas tropidonotus (Van Lidth de Jeude, 1923) and Pareas vertebralis (Boulenger, 1900) (Serpentes: Colubridae: Pareatinae). Russian Journal of Herpetology. 10(3), 175–190.
Grossmann, W., Tillack, F., 2003. On the taxonomic status of Asthenodipsas tropidonotus (Van Lidth de Jeude, 1923) and Pareas vertebralis (Boulenger, 1900) (Serpentes: Colubridae: Pareatinae). Russian Journal of Herpetology. 10(3), 175–190.
Guo, K.G., Deng, X.J., 2009. A new species of Pareas (Serpentes: Colubridae: Pareatinae) from the Gaoligong Mountains, southwestern China. Zootaxa. 2008, 53–60.
Hoso, M., 2007. Oviposition and hatchling diet of a snail-eating snake Pareas iwasakii (Colubridae: Pareatinae). Current Herpetology. 26, 41–43.
Hoso, M., Asami, T., Hori, M., 2007. Right-handed snakes: convergent evolution of asymmetry for functional specialization. Biology Letters. 3, 169–172.
Hoso, M., Hori, M., 2006. Identification of molluscan prey from feces of Iwasaki’s slug snake, Pareas iwasakii. Herpetological Review. 37, 174–176.
Hoso, M., Hori, M., 2008. Divergent shell shape as an antipredator adaptation in tropical land snails. American Naturalist. 172, 726–732.
Hoso, M., Kameda, Y., Wu, S.P., Asami, T., Kato, M., Hori, M., 2010. A speciation gene for left–right reversal in snails results in anti-predator adaptation. Nature Communications. 1:133/ncomms1133.
Huang, Q. Y., 2004. Pareas chinensis (Babour, 1912) should be a junior synonym of Pareas formosensis (Van Denburgh, 1909). Sichuan Journal of Zoology. 23(3), 209–210 [In Chinese].
Huelsenbeck, J.P., F. Ronquist, 2001. MrBayes: Bayesian inference of phylogenetic trees. Bioinformatics. 17, 754–755.
International Commission on Zoological Nomenclature (ICZN), 1971. Opinion 963. Amblycephalus Kuhl & van Hasselt, 1822 (Reptilia): suppressed under the Plenary Powers. Bulletin of Zoological Nomenclature. Nomen. 28, 44-45.
Jiang, Y.M., 2004. Pareas macularius Theobald, 1868 should be a junior synonym of Pareas margaritophorus (Jan, 1866). Sichuan Journal of Zoology. 23(3), 207–208 [In Chinese].
Lawson, R., Slowinski, J.B., Crother, B.I., Burbrink, F.T., 2005. Phylogeny of the Colubroidea (Serpentes): new evidence from mitochondrial and nuclear genes. Molecular Phylogenetics and Evolution. 37, 581–601.
Librado, P., Rozas, J., 2009. DnaSP v5: A software for comprehensive analysis of DNA polymorphism data. Bioinformatics. 25, 1451–1452.
Maki, M., 1931. A Monograph of the Snakes of Japan. Dai-ichi Shobo, Tokyo.
Oshima, M., 1910. An annotated list of Formosan snakes, with descriptions of four new species and one new subspecies. Annotations Zoologicae Japonensis. 7, 185–207.
Oshima, M., 1916. A correction of scientific species names of Taiwanese snakes. Zoological Magazine. 28, 84–86 [in Japanese].
Ota, H., Lin, J.T., Hirata, T., Chen, S.L., 1997. Systematic review of colubrid snakes of the genus Pareas in the East Asian Islands. Journal of Herpetology. 31(1), 79–87.
Posada, D., Crandall, K.A., 1998. MODELTEST: testing the model of DNA substitution. Bioinformatics. 14, 817–818.
Pyron, R.A., Burbrink, F.T., Colli, G.R., De Oca, A.N.M., Vitt, L.J., Kuczynski, C.A., Wiens, J.J., 2011. The phylogeny of advanced snakes (Colubroidea), with discovery of a new subfamily and comparison of support methods for likelihood trees. Molecular Phylogenetics and Evolution. 58, 329–342.
Rao, D.Q., Yang, D.T., 1992. Phylogenetic systematics of Pareatinae (Serpentes) of Southeastern Asia and adjacent islands with relationship between it and the geology changes. Acta Zoologica Sinica. 38(2), 139–150 [In Chinese].
Sengoku, S., 1996. Iwasaki’s slug snake. In Amphibians, reptiles, chondrichthyes (eds S. Sengoku, T. Hikida, M. Matsui & K. Nakaya), pp. 83–84. Tokyo, Japan: Heibonsha.
Slowinski, J.B., Lawson, R., 2002. Snake phylogeny: evidence from nuclear and mitochondrial genes. Molecular Phylogenetics and Evolution. 23, 194–202.
Smith, M.A., 1943. The Fauna of British India, Ceylon and Burma, Including the whole of the IndoChinese Subregion. Reptilia and Amphibia. Vol. III. –Serpentes. Taylor and Francis, London.
Sotka, E.E., Wares, J.P., Barth, J.A., Grosberg, R.K., Palumbi, S.R., 2004. Strong genetic clines and geographical variation in gene flow in the rocky intertidal barnacle Balanus glandula. Molecular Ecology. 13, 2143–2156.
Stephens, M., Scheet, P., 2005. Accounting for decay of linkage disequilibrium in haplotype inference and missing data imputation. American Journal of Human Genetics. 76, 449–462.
Stephens, M., Smith, N.J., Donnelly, P., 2001. A new statistical method for haplotype reconstruction from population data. American Journal of Human Genetics. 68, 978–989.
Swofford, D.L., 2001. PAUP*. Phylogenetic Analysis Using Parsimony (*and other methods), version 4 beta10. Sunderland, MA.
Taylor, E.H., 1965. The serpents of Thailand and adjacent waters. University of Kansas Science Bulletin. 45, 609–1079.
Van Denburgh, J., 1909. New and previously unrecorded species of reptiles and amphibians from the island of Formosa. Proceedings of the California Academy of Sciences. 4th Ser. 3, 49–56.
Vidal, N., Delmas, A.-S., David, P., Cruaud, C., Couloux, A., Hedges, S.B., 2007. The phylogeny and classification of caenophidian snakes inferred from seven nuclear protein-coding genes. Comptes Rendus Biologies. 330, 182–187.
Wiliams, K.L., Van Wallach, 1989. Snakes of the World. Vol. 1. Synopsis of Snake Generic Names. R. E. Krieger Publ. Co., Malabar, Florida.
Zhao, E.M., Huang, M.H., Zong, Y. (eds.), 1998. Fauna Sinica. Squamata, Serpentes, Reptilia Vol. 3. Science Press, Beijing, 522 pp. [In Chinese].