研究生: |
陳姵穎 Chen, Pei-Ying |
---|---|
論文名稱: |
高分子電解質電洞傳輸層對鈣鈦礦太陽能電池之影響 The Influence of Polyelectrolytes Hole Transport Layer on Perovskite Solar Cells |
指導教授: |
趙宇強
Chao, Yu-Chiang |
口試委員: | 趙宇強 陳奕君 陳建彰 |
口試日期: | 2021/07/12 |
學位類別: |
碩士 Master |
系所名稱: |
物理學系 Department of Physics |
論文出版年: | 2021 |
畢業學年度: | 109 |
語文別: | 中文 |
論文頁數: | 56 |
中文關鍵詞: | p-i-n 結構鈣鈦礦太陽能電池 、P3CT 、電洞傳輸層改質 |
英文關鍵詞: | p-i-n structure perovskite solar cells, P3CT, modification of the hole transport layer |
研究方法: | 實驗設計法 |
DOI URL: | http://doi.org/10.6345/NTNU202100750 |
論文種類: | 學術論文 |
相關次數: | 點閱:101 下載:1 |
分享至: |
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
吸光層與電洞傳輸層之間的界面不僅決定了能帶匹配和電荷傳輸的問題,還影響了鈣鈦礦的生長,因此選擇合適的電洞傳輸層有其必要性。本篇主要透過電洞傳輸層改質來提高 p-i-n 結構鈣鈦礦太陽能電池之效率,首先將 P3CT 與鹼金屬之合成取代傳統 PEDOT:PSS 作為電洞傳輸層,分為四種材料:P3CT-Na、P3CT-K、P3CT-Cs、P3CT-Rb,再分別以厚度 ( thickness ) 、溶液配置時間 ( aging time )、退火溫度 ( annealing temperature ) 三種條件做元件效率最佳化之分析,並透過 X射線繞射分析儀 (XRD) 及原子力顯微鏡 (AFM) 觀察不同退火溫度條件下薄膜晶體結構與形貌之變化,而以 P3CT-Na 做為電洞傳輸層比 PEDOT:PSS 最高可提升百分之四十的效率,並在 P3CT-Na與 P3CT-K 元件可達到正掃 17%、反掃 18% 的效率。
The interface between the perovskite film and the hole transport layer (HTL) not only determines band gap alignment and the hole transportation but also affects the growth of perovskite crystallites. Therefore, it is necessary to choose a suitable HTL. This thesis improved the power conversion efficiencies (PCEs) of the p-i-n structure perovskite solar cells (PSCs) through the modification of the hole transport layer. The PEDOT: PSS was replaced by the polyelectrolyte poly[3-(4-carboxybutyl)thiophene-2,5-diyl] (P3CT)-alkali metal. Four kinds of polyelectrolytes were synthesized: P3CT-Na, P3CT-K, P3CT-Cs and P3CT-Rb. The influence of the polyelectrolyte thickness, aging time and annealing temperature on the device performance were investigated. X-ray diffraction patterns and atomic force images were recorded to understand the changes in the film crystallinity and morphology. The device using P3CT-Na delivered superior device performance (40% increase) comparing with the performance of the device using PEDOT:PSS. The PCE values of 17% in forward scan and 18% in backward scan were obtained for the devices using P3CT-Na and P3CT-K.
[1] H. L. Wells and Z. Anorg, “Über die Cäsium‐ und Kalium‐Bleihalogenide, “ Journal of Inorganic and General Chemistry, Volume 3, Issue 1, Pages 195-210 (1893)
[2] D. Weber and Z. Naturforsch, “CH3NH3PbX3, a Pb(II)-System with Cubic Perovskite Structure, ” A Journal of Chemical Sciences, Volume 33, Issue 12, Pages 1443-1445 (1978).
[3] D. B. Mitzi et al., “Conducting Layered Organic-inorganic Halides Containing <110>-Oriented Perovskite Sheet, ” Science, Volume 267, Issue 5203, Pages 1473-1476 (1995)
[4] M. Era and S. Oka, “PbBr-based layered perovskite film using the Langmuir-Blodgett technique, ” Thin Solid Films, Volume 376, Issues 1–2, Pages 232-235 (2000)
[5] M. Era and A. Shimizu,” PBI-Based Layered Perovskite Organic-Inorganic Superlattice Film by the Langmuir-Blodgett Technique, ” Molecular Crystals and Liquid Crystals Science and Technology, Volume 370, Issue 1, Pages 215-218 (2001)
[6] Y. Takeoka et al., “Incorporation of conjugated polydiacetylene systems into organic–inorganic quantum-well structures, ” Chemical Communications, Issue 24, Pages 2592-2593 (2001)
[7] T. Kondo et al., “Resonant third-order optical nonlinearity in the layered perovskite-type material (C6H13NH3)2PbI4, ” Solid State Communications, Volume 105, Issue 8, Pages 503-506 (1998)
[8] K. Tanaka et al., “Comparative study on the excitons in lead-halide-based perovskite-type crystals CH3NH3PbBr3 CH3NH3PbI3, ” Solid State Communications, Volume 127, Issues 9–10, Pages 619-623 (2003)
[9] J. Ishi et al., “Third-Order Optical Nonlinearity Due to Excitons and Biexcitons in a Self-Organized Quantum-Well Material (C6H13NH3)2PbI4, ” Journal of Nonlinear Optical Physics & Materials, Volume 07, Issue 1, Pages. 153-159 (1998)
[10] K. Ema et al., “Huge exchange energy and fine structure of excitons in an organic-inorganic quantum well material, ” PHYSICAL REVIEW B, Volume 73, Issue 24, Pages 241310(R) (2006)
[11] A. Kojima, et al., “Organometal Halide Perovskites as Visible-Light Sensitizers for Photovoltaic Cells, ” Journal of the American Chemical Society, Volume 131, Issue 17, Pages 6050–6051 (2009)
[12] J.-H. Im et al., “6.5% efficient perovskite quantum-dot-sensitized solar cell, ” Nanoscale, Volume 3, Issue 10, Pages 4088-4093 (2011)
[13] H.-S. Kim, et al., “Lead Iodide Perovskite Sensitized All-Solid-State Submicron Thin Film Mesoscopic Solar Cell with Efficiency Exceeding 9%, ” scientific reports 2, Number 591 (2012)
[14] M. M. Lee et al., “Efficient Hybrid Solar Cells Based on Meso-Superstructured Organometal Halide Perovskites,” Science, Volume 338, Issue 6107, Pages 643-647 (2012)
[15] A. Kojima, et al., “Highly Luminescent Lead Bromide Perovskite Nanoparticles Synthesized with Porous Alumina Media, ” Chemistry Letters, Volume 41, Issue 4, Pages 397-399 (2012)
[16] S. D. Stranks et al., “Electron-Hole Diffusion Lengths Exceeding 1 Micrometer in an Organometal Trihalide Perovskite Absorber, ” Science, Volume 342, Issue 6156, Pages 341-344 (2013)
[17] J. H. Noh et al., “Chemical Management for Colorful, Efficient, and Stable Inorganic-Organic Hybrid Nanostructured Solar Cells, ” Nano Letters, Volume 13, Issue 4, Pages 1764–1769 (2013)
[18] M. Habibi et al., “Progress in emerging solution-processed thin film solar cells – Part II: Perovskite solar cells, ” Renewable and Sustainable Energy Reviews, Volume 62, Pages 1012-1031 (2016)
[19] J. M. Ball et al., “Low-temperature processed meso-superstructured to thin-film perovskite solar cells, ” Energy & Environmental Science, Volume 6, Issue 6, Pages 1739-1743 (2013)
[20] D. Liu and T. L. Kelly, “Perovskite solar cells with a planar heterojunction structure prepared using room-temperature solution processing techniques, ” nature photonics, Volume 8, pages133–138 (2014)
[21] J. Y. Jeng et al., “CH3NH3PbI3 Perovskite/Fullerene Planar-Heterojunction Hybrid Solar Cells, ” Advanced Materials, Volume 25, Issue 27, Pages 3727-3732 (2013)
[22] N. J. Jeon et al., “Solvent engineering for high-performance inorganic-organic hybrid perovskite solar cells, ” Nature Materials, Volume 13, Pages 897-903 (2014)
[23] S. H. Chang et al., “Effects of the washing-enhanced nucleation process on the material properties and performance of perovskite solar cells, ” Journal of Alloys and Compounds, Volume 808 (2019)
[24] J. Burschka et al., “Sequential deposition as a route to high-performance perovskite-sensitized solar cells, ” Nature, Volume 499, Pages 316-319 (2013)
[25] J. H. Im et al., “Morphology-photovoltaic property correlation in perovskite solar cells: One-step versus two-step deposition of CH3NH3PbI3, ” APL Materials, Volume 2, Issue 8 (2014)
[26] Cheng Bi et al., “Understanding the formation and evolution of interdiffusion grown organolead halide perovskite thin films by thermal annealing, ” Journal of Materials Chemistry A, Volume 2, Issue 43, Pages 18508-18514 (2014)
[27] M. Liu, M. B. Johnston and H. J. Snaith, “Efficient planar heterojunction perovskite solar cells by vapour deposition, ” Nature, Volume 501, Pages 395-398 (2013)
[28] Yuchuan Shao et al., “Origin and elimination of photocurrent hysteresis by fullerene passivation in CH3NH3PbI3 planar heterojunction solar cells, ” Nature Communications 5, Number 5784 (2014)
[29] L. Zuo et al., “Enhanced Photovoltaic Performance of CH3NH3PbI3 Perovskite Solar Cells through Interfacial Engineering Using Self-Assembling Monolayer, ” Journal of the American Chemical Society, Volume 137, Issue 7, Pages 2674-2679 (2015)
[30] F. Wang et al., “Phenylalkylamine Passivation of Organolead Halide Perovskites Enabling High-Efficiency and Air-Stable Photovoltaic Cells, ” Advanced Materials, Volume 28, Issue 45, Pages 9986-9992 (2016)
[31] X. Zheng et al., “Defect passivation in hybrid perovskite solar cells using quaternary ammonium halide anions and cations, ” Nature Energy, Volume 2, Number 17102 (2017)
[32] https://www.nrel.gov/pv/cell-efficiency.html
[33] Z. Xiao et al., “Efficient, high yield perovskite photovoltaic devices grown by interdiffusion of solution-processed precursor stacking layers, ” Energy & Environmental Science, Volume 7, Issue 8, Pages 2619-2623 (2014)
[34] R. Pacios et al., “Effects of Photo-oxidation on the Performance of Poly[2-methoxy-5-(3’,7’-dimethyloctyloxy)-1,4-phenylene vinylene]:[6,6]-Phenyl C61 -Butyric Acid Methyl Ester Solar Cells, ” Advanced Functional Materials, Volume16, Issue16, Pages 2117-2126 (2006)
[35] K. Kawano et al., “Degradation of organic solar cells due to air exposure, ” Solar Energy Materials and Solar Cells, Volume 90, Issue 20, Pages 3520-3530 (2006)
[36] M. Jørgensen, K. Norrman and F. C. Krebs, “Stability/degradation of polymer solar cells, ” Solar Energy Materials & Solar Cells, Volume 92, Pages 686-714 (2008)
[37] H. Yan et al., “High-performance hole-transport layers for polymer light-emitting diodes. Implementation of organosiloxane cross-linking chemistry in polymeric electroluminescent devices, ” Journal of the American Chemical Society, Volume 127, Issue 9, Pages 3172–3183 (2005)
[38] X. Li et al., “Polyelectrolyte based hole-transporting materials for high performance solution processed planar perovskite solar cells, ” Journal of Mat- erials Chemistry A, Volume 3, Issue 29, Pages 15024-15029 (2015)
[39] N. G. Park, “Perovskite solar cells: an emerging photovoltaic technology, ” Materials Today, Volume 18, Issue 2, Pages 65-72 (2015)
[40] M. A. Green, A. Ho-Baillie and H. J. Snaith, “The emergence of perovskite solar cells,” Nature Photonics, Volume 8, Pages 506–514 (2014)
[41] G. E. Eperon et al., “Formamidinium lead trihalide: a broadly tunable perovskite for efficient planar heterojunction solar cells, ” Energy & Environmental Science, Volume 7, Issue 3, Pages 982-988 (2014)
[42] M. Anaya et al., “ABX3 Perovskites for Tandem Solar Cells, ” Joule, Volume 1, Issue 4, Pages 769-793 (2017)
[43] J. Tong et al., “Carrier lifetimes of >1 ms in Sn-Pb perovskites enable efficient all-perovskite tandem solar cells, ” Science, Volume 364, Issue 6439, Pages 475-479 (2019)
[44] M. Saliba et al., “Incorporation of rubidium cations into perovskite solar cells improves photovoltaic performance, ” Science, Volume 354, Issue 6309, Pages 206-209 (2016)
[45] K. Sun et al., “Review on application of PEDOTs and PEDOT:PSS in energy conversion and storage devices, ” Journal of Materials Science:Materials in Electronics, Volume 26, Issue 7, Pages 1-25 (2015)
[46] S. Li et al., “Highly efficient inverted perovskite solar cellsincorporating P3CT-Rb as a hole transport layer to achieve a large open circuit voltage of 1.144 V, ” Nanoscale, Volume 12, Issue 6, Pages 3686-3691 (2020)
[47] S. H. Yoo, J. M. Kum and S. O. Cho, “Tuning the electronic band structure of PCBM by electron irradiation, ” Nanoscale Research Letters, Volume 6, Number 545 (2011)
[48] B. Rivkin et al., “Effect of Ion Migration-Induced Electrode Degradation on the Operational Stability of Perovskite Solar Cells, ” ACS Omega, Volume 3, Issue 8, Pages 10042-10047 (2018)
[49] http://setcas.com/
[50] http://www.scienchem.com.tw/it-purelab-4gb.html
[51] http://www.olink.com.tw/product_56098.html