簡易檢索 / 詳目顯示

研究生: 翁秉承
Bing-Cheng Weng
論文名稱: 針對線性變換及仿射變換設計動態幾何軟體之研究
Design of Linear and Affine Transformations in Dynamic Geometry Software
指導教授: 張鈞法
學位類別: 碩士
Master
系所名稱: 資訊工程學系
Department of Computer Science and Information Engineering
論文出版年: 2010
畢業學年度: 98
語文別: 中文
論文頁數: 28
中文關鍵詞: 線性變換仿射變換遊戲式學習
英文關鍵詞: OGRE
論文種類: 學術論文
相關次數: 點閱:190下載:7
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 隨著科技快速的進步,數位學習逐漸嶄露頭角,針對學習課程所設計的電腦輔助教學軟體更是不勝枚舉,但以幾何教學為出發點的「動態幾何教學軟體」至今還尚未普遍應用在各種課程中,尤其是高等數學教育,若動態幾何軟體能妥善設計,將會對高等數學在證明與定義的思維有所幫助,本研究感興趣的主題,就是在於如何將動態幾何軟體應用在高等數學教學課程上,以大學課程中線性代數為例,針對線性變換與仿射變換的課程做動態幾何軟體的設計。除了利用軟體將變換結果具體呈現外,還設計讓學生能自由控制變換矩陣的平台,讓學生先經由不斷觀察圖形的變化例子對幾何內容做相關臆測後,再學習到線性變換矩陣是如何透過奇異值分解的幾何原理來得知變換的圖形,並製作相關動畫讓學生能夠動態的看到變換情況,進一步再去瞭解仿射變換的幾何意義,這樣對於課程內容才會比較有系統上的安排。軟體設計方面,利用OGRE圖形引擎為開發工具,在於希望藉由OGRE內獨特場景管理類別,達到奇異值分解幾何意義的成效。除此之外,本軟體也以RPG遊戲設計的思考方式去呈現,希望將遊戲與教學做結合,讓學生在遊戲當中也能學習到課程內容,引發學生的學習興趣與動機。

    Educationists hope that dynamic geometry software tool can apply instruction on courses, above all advanced math. If the software designs well, it will be useful for proofing math theorems and solving questions. In order to these thoughts, we dicuss a research theme how to design a dynamic geometry software on linear and affine transformation.The software’s benefit is that we not only control translation matrix very simply, but also look its result instantly. By the method, students can conjecture the relation between linear translation and SVD and then realize their geometry principle. Finally, catching on affine transformation property. Moreover, we use game principle to design the software. We hope we may increase study interest and their motivation by combining teaching with video game.

    第一章 緒論 1 1.1 研究動機 1 1.2 研究目的 1 1.3 論文架構 2   第二章 文獻探討與相關研究  3   2.1  數學教育的發展 3 2.2 動態幾何環境 3 2.3 臆測能力的培養 3 2.4 遊戲與教學間的結合 4 第三章 線性變換與仿射變換  5 3.1  線性變換的重要性 5 3.2  線性變換與奇異值分解 5 3.3  奇異值分解的幾何意義 6 3.4  由線性變換至仿射變換 6 第四章 動態幾何軟體架構     8     4.1  摘要 8 4.2  OGRE特色 8 4.3  VLAT設計概念 9 4.4  利用OGRE設計線性變換功能 10 4.5  參數平面的設計 10 4.6  動畫功能 12 4.7  仿射變換設計說明 12 第五章 軟體展示 14         5.1  軟體執行畫面 14 5.2  介面展示 15 5.2.1 定義域與值域 15 5.2.2 參數平面 15 5.3  動畫功能說明 17 第六章 結論與未來發展 18         6.1  結論 18 6.2  未來發展 18 參考著作 20 附錄A 數學教學活動設計單 22

    [1] Schoenfeld, A. (2008) Research methods in (mathematics) education, Handbook of international research in mathematics education, edited by Lyn D. English; associate editors Maria Bartolini Bussi … et al.
    [2] Tall, D.(1992) The Transition to advanced mathematical thinking: functions, limits. infinity, and proof. In D. A. Grouws(ed)(1992). Handbook of research on mathematics teaching and learning, NCTM, Macmillan Publishing Company, New York, 495—511
    [3] Hooper, K., Hypercard: A key to educational computing, Learning With Interactive Multimedia Developing and Using Multimedia Tools in Education, In Ambron, Hooper, Apple Computer Computer Inc. Washington: Microsoft Press, 1990.
    [4]Chandler, P. and Sweller, J., “Cognitive load theory and the format of instruction,” Cognition and Instruction, 8, 1991, 293-332.
    [5] Noss, R. and Hoyles, C. (1996) Windows on Mathematical Meanings─Learning Cultures and Computers, Kluwer Academic Publishers.
    [6] Choi-Koh, S. S. (1999). A Student’s learning of geometry using the computer. The Journal of Educational Research, 92(5), 301-311.
    [7] Wares, A. (2004). Conjectures and proofs in a dynamic geometry environment. International Journal of Mathematical Education in Science and Technology, 35(1), 1-10.
    [8] Manouchehri, A., Enderson, M. C., Pugnucco, L. A. (1998). Exploring Geometry
    with technology. Mathematics Teaching in the Middle School 3(6):436–442.
    [9] Koedinger, K., 1998, “Conjecturing and argumentation in high-school geometry students,” In R. Lehrer & D. Chazan (Eds.), Designing Learning environments for developing understanding of geometry and space, Mahwah, NJ: L. Erlbaum, pp. 319-347.
    [10] BOERO, P., R. GARUTI & M.A. MARIOTTI. 1996. Some Dynamic Processes Underlying Producing and Proving Conjectures. In Proc. of PME-XX. Vol.2: 121-128. Valencia.
    [11] Polya, G. (1962) Mathematical Discovery: On Understanding, Learning and Teaching Problem Solving. Combined edition. Wiley, New York.
    [12] Mason, J. (1985). Thinking Mathematically, Great Britain. Addison-Wesley.
    [13] Lancy, D. F., Will video games alter relationship between play and cognitive development, Symposium on Play and Cognitive Development in Cross-Cultural Perspective at the Eight Biennial Meeting of the International Society for the Study of Behavioral Development, Tours, France, 1985.
    [14] Lepper, M.R., & Malone, T., W. Intrinsic motivation and instructional effectiveness in computer-based education. In R. E. Snow & M. J. Farr (Eds.), Aptitude, learning, and instruction III. Cognitive and affective process analysis. Hilldale, NJ: Erlbaum, 1983.
    [15] Malone, T. W., What makes things fun to learn? A study of intrinsically motivating computer games. Dissertation Abstracts International, 41, 1955B, 1980.
    [16] Malone, T. W., & Lepper, M. R., Making learning fun: A taxonomy of intrinsic motivations for learning. In R. E. Snow & M. J. Farr (Eds.), Aptitude, learning, and instruction: III. Cognition and affective process analysis. Hillsdale, NJ: Erlbaum, 1983.

    下載圖示
    QR CODE