簡易檢索 / 詳目顯示

研究生: 余政和
Cheng-He Yu
論文名稱: 解絕對值方程式的新平滑函數
New Smoothing Functions for Absolute Value Equation
指導教授: 陳界山
Chen, Jein-Shan
學位類別: 碩士
Master
系所名稱: 數學系
Department of Mathematics
論文出版年: 2015
畢業學年度: 103
語文別: 英文
論文頁數: 16
中文關鍵詞: 平滑函數奇異值收斂
英文關鍵詞: Smoothing function, singular value, convergence
論文種類: 學術論文
相關次數: 點閱:257下載:26
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 無中文摘要

    The system of absolute value equations Ax + B|x| = b, denoted by AVEs, is a non-differentiable NP-hard problem, where A,B are arbitrary given n × n real matrices and b is arbitrary given n-dimensional vector. In this paper, we study four new smoothing functions and propose a smoothing-type algorithm to solve AVEs. With the assumption that the minimal singular value of the matrix A being strictly greater than the maximal singular value of the matrix B, we prove that the algorithm is globally and locally quadratically convergent with the four smooth equations.

    Abstract P.1 1. Introduction P.1 2. Smooth reformulation P.3 3. A smoothing-type algorithm P.9 4. Convergence P.12 5. Conclusion P.14 References p.15

    [1] S. L. Hu, Z. H. Huang, and J. S. Chen, Properties of a family of generalized NCP-functions and a derivative free algorithm for complementarity problems, Journal of Computational and Applied Mathematics, vol. 230, pp. 69-82, 2009.
    [2] S. L. Hu, Z. H. Huang, and Q. Zhang, A generalized Newton method for absolute value equations associated with second order cones, Journal of Computational and Applied Mathematics, vol. 235, pp. 1490-1501, 2011.
    [3] R. A. Horn and C. R. Johnson, Matrix Analysis, Cambridge University Press, Cambridge, 1985.
    [4] Z. H. Huang, Locating a maximally complementary solution of the monotone NCP by using non-interior-point smoothing algorithms, Mathematical Methods of Operation Research, vol 61, pp. 41-45, 2005.
    [5] Z-H. Huang, Y. Zhang, and W. Wu, A smoothing-type algorithm for solving system of inequalities, Journal of Computational and Applied Mathematics, vol. 220, pp. 355-363, 2008.
    [6] X. Jiang, and Y. Zhang, A smoothing-type algorithm for absolute value equations, Journal of Industrial and Management Optimization, vol. 9, pp. 789-798, 2013.
    [7] J. S. Chen, C. H, Ko, Y. D. Liu, and S. P. Wang, New smoothing functions for solving a system of equalities and inequalities, to appear in Pacific Journal of Optimization, 2016.
    [8] O. L. Mangasarian, Absolute value equation solution via concave minimization, Optimization Letters, vol. 1, pp. 3-5, 2007.
    [9] O. L. Mangasarian, A generalized Newton method for absolute value equations, Optimization Letters, vol. 3, pp. 101-108, 2009.
    [10] O. L. Mangasarian, Primal-dual bilinear programming solution of the absolute value equation, Optimization Letters, vol. 6, pp. 1527-1533, 2012.
    [11] O. L. Mangasarian, Absolute value equation solution via dual complementarity, Optimization Letters, vol. 7, pp. 625-630, 2013.
    [12] O. L. Mangasarian and R. R. Meyer, Absolute value equation, Linear Algebra and Its Applications, vol. 419, pp. 359-367, 2006.
    [13] L. Qi, Convergence analysis of some algorithms for solving nonsmooth equations, Mathematics of Operations Research, vol. 18, pp. 227-244, 1993.
    [14] L. Qi, D. Sun, and G.L. Zhou, A new look at smoothing Newton methods for nonlinear complementarity problems and box constrained variational inequality problems, Mathematical Programming, vol. 87, pp. 1-35, 2000.
    [15] Robert G. Bartle, The Elements of Real Analysis, Wiley, Second Edition, 1976
    [16] Y. Zhang and Z-H. Huang, A nonmonotone smoothing-type algorithm for solving a system of equalities and inequalities, Journal of Computational and Applied Mathematics, vol. 233, pp. 2312-2321, 2010.
    [17] C. Zhang and Q. J. Wei, Global and finite onvergence of a generalized Newton method for absolute value equations, Journal of Optimization Theory and Applications, vol. 143, pp. 391-403, 2009.

    下載圖示
    QR CODE