研究生: |
阮琳鋒 Ruan, Lin-Feng |
---|---|
論文名稱: |
基於百度搜索指數的投資人關注度對滬深 300 指數成分股報酬之影響 The Effects of Investor Attention based on Baidu Search Index on Stock Return of CSI 300 Stock Market |
指導教授: |
蔡蒔銓
Tsai, Shih-Chuan |
學位類別: |
碩士 Master |
系所名稱: |
管理研究所 Graduate Institute of Management |
論文出版年: | 2019 |
畢業學年度: | 107 |
語文別: | 中文 |
論文頁數: | 37 |
中文關鍵詞: | 投資人關注度 、投資人情緒 、本地偏好 、股票報酬 、百度指數 、市場狀態 |
英文關鍵詞: | Investor attention, Investor sentiment, Home Bias, Stock returns, Baidu index, State of the market |
DOI URL: | http://doi.org/10.6345/NTNU201900526 |
論文種類: | 學術論文 |
相關次數: | 點閱:229 下載:26 |
分享至: |
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
本研究旨在研究分析投資人對股票的關注度與股票報酬的相關性,並以中國 大陸最大的搜索引擎——百度搜索指數(SVI)為投資人關注度的代理變數,以 2014-2018 期間中國大陸滬深 300 指數成分股中 164 家公司的股票資訊為樣本, 透過回歸分析發現:以股票代碼為搜索關鍵字的異常搜索量 ASVI 對股票報酬的 解釋能力最強,並且與報酬的影響呈前期顯著正相關,後期反轉為顯著負相關; 多頭市場期間,當期關注度的上升會加速當期股價的上漲,也會減弱下一期股價 的下跌幅度,高波動市場期間也出現了上述同樣的狀況;投資人情緒高漲期間, 當期關注度的上升能加速當期股價的上漲,但並不能影響下一期股價的下跌幅度; 投資人本地關注上升亦能導致當地公司當期股價上漲,但並不會影響後期的漲跌。
This study is to research and analysis for stock investors the attention and the correlation of stock returns, and in mainland China's largest search engine, baidu search index (SVI) as the investor attention proxy variables, in mainland China during 2014- 2018 164 shares in CSI 300 index information as sample, through the regression analysis found that: in stock code for abnormal search keyword searches ASVI explanation for stock compensation ability, the strongest and compensation are the significant positive correlation, the influence of the late into significant negative correlation; During the bull market period, the increase of attention in the current period will accelerate the rise of stock prices in the current period and weaken the fall of stock prices in the next period. During the period of high investor sentiment, the increase of current attention can accelerate the rise of current stock price, but cannot affect the decline of next period stock price; Investors' increased local attention can also lead to a rise in the current share price of local companies, but will not affect the later ups and downs.
1. 李永隆, 杜玉振, & 王瑋瑄. (2017). Google 搜尋量指數對臺灣股票報酬與成交量之影響. 管理與系統, 24(4), 565-590.
2. 畢曉亮. (2018). 市場關注度對股票收益率的影響——基於行為金融學的實證研究. 現代商貿工業, 39(12), 117-119.
3. 陳植元, 米雁翔, 厲洋軍, & 鄭君君. (2016). 基於百度指數的投資者關注度與股票市場表現的實證分析. 統計與決策, (23), 155-157.
4. 宋雙傑, 曹暉, & 楊坤. (2011). 投資者關注與 IPO 異象——來自網絡搜索量的經驗證據. 經濟研究, 1, 145-155.
5. 俞慶進, & 張兵. (2012). 投資者有限關注與股票收益——以百度指數作為關注度的一項實證研究. 金融研究, (8), 152-165.
6. 易洪波, & 欧云. (2016). 网络论坛信息挖掘与投资者情绪测度--基于多元 GARCH-BEKK 模型分析. 管理现代化, (2016 年 05), 20-22.
7. 董大勇, & 肖作平. (2011). 证券信息交流家乡偏误及其对股票价格的影响: 来自股票论坛的证据. 管理世界, 1, 52-61.
8. Barber, B. M., & Odean, T. (2007). All that glitters: The effect of attention and news on the buying behavior of individual and institutional investors. The review of financial studies, 21(2), 785-818.
9. Chiyachantana, C. N., Jain, P. K., Jiang, C., & Wood, R. A. (2004). International evidence on institutional trading behavior and price impact. The Journal of Finance, 59(2), 869-898.
10. Chemmanur, T. J., & Yan, A. (2019). Advertising, attention, and stock returns. Quarterly Journal of Finance, 1950009.
11. Engelberg, J. O. S. E. P. H., & Gao, P. (2011). In search of attention. The Journal of Finance, 66(5), 1461-1499.
12. Joseph, K., Wintoki, M. B., & Zhang, Z. (2011). Forecasting abnormal stock returns and trading volume using investor sentiment: Evidence from online search. International Journal of Forecasting, 27(4), 1116-1127.
13. Ding, R., & Hou, W. (2015). Retail investor attention and stock liquidity. Journal of International Financial Markets, Institutions and Money, 37, 12-26.
14. Dimpfl, T., & Jank, S. (2016). Can internet search queries help to predict stock market volatility?. European Financial Management, 22(2), 171-192.
15. Fama, E. F. (1965). The behavior of stock-market prices. The journal of Business, 38(1), 34-105.
16. Fabozzi, F. J., & Francis, J. C. (1977). Stability tests for alphas and betas over bull and bear market conditions. The Journal of Finance, 32(4), 1093-1099.
17. Hamid, A., & Heiden, M. (2015). Forecasting volatility with empirical similarity and Google Trends. Journal of Economic Behavior & Organization, 117, 62-81.
18. Kahneman, D. (1973). Attention and effort (Vol. 1063). Englewood Cliffs, NJ: Prentice-Hall.
19. Levy, R. A. (1974). Beta coefficients as predictors of return. Financial Analysts Journal, 30(1), 61-69.
20. Markowitz, H. (1952). Portfolio selection. The journal of finance, 7(1), 77-91.
21. Simon, H. A. (1991). Organizations and markets. Journal of economic perspectives, 5(2), 25-44.
22. Vozlyublennaia, N. (2014). Investor attention, index performance, and return predictability. Journal of Banking & Finance, 41, 17-35.
23. Veit, E. T., & Cheney, J. M. (1982). Are mutual funds market timers. Journal of Portfolio Management, 8(2), 35-42.
24. Baker, M., & Wurgler, J. (2006). Investor sentiment and the cross‐section of stock returns. The journal of finance, 61(4), 1645-1680.
25. Antweiler, W. & Frank M. Z.(2004). Is All That Talks Just Noise? The Information Content of Internet Stock Message Boards, Journal of Finance, 59(3), 1259-1294.
26. Baker, M., Wurgler, J., & Yuan, Y. (2012). Global, local, and contagious investor sentiment. Journal of financial economics, 104(2), 272-287.
27. French, K. R., & Poterba, J. M. (1991). Investor diversification and international equity markets (No. w3609). National Bureau of Economic Research.
28. Coval, J. D., & Moskowitz, T. J. (1999). Home bias at home: Local equity preference in domestic portfolios. The Journal of Finance, 54(6), 2045-2073.
29. Mavruk, S., & Avsar, D. (2008). Non-native fishes in the Mediterranean from the Red Sea, by way of the Suez Canal. Reviews in fish biology and fisheries, 18(3), 251-262.
30. Huberman, G. (2001). Familiarity breeds investment. The Review of Financial Studies, 14(3), 659-680.
31. Huang, Y., Qiu, H., & Wu, Z. (2016). Local bias in investor attention: Evidence from China's Internet stock message boards. Journal of Empirical Finance, 38, 338-354.
32. Karlsson, N., Loewenstein, G., & Seppi, D. (2009). The ostrich effect: Selective attention to information. Journal of Risk and uncertainty, 38(2), 95-115.
33. Andrei, D., & Hasler, M. (2014). Investor attention and stock market volatility. The review of financial studies, 28(1), 33-72.
34. Seasholes, M. S., & Zhu, N. (2010). Individual investors and local bias. The Journal of Finance, 65(5), 1987-2010.
35. Ivković, Z., & Weisbenner, S. (2005). Local does as local is: Information content of the geography of individual investors' common stock investments. The Journal of Finance, 60(1), 267-306
36. Wang, C., Murgulov, Z., & Haman, J. (2015). Impact of changes in the CSI 300 Index constituents. Emerging Markets Review, 24, 13-33.