簡易檢索 / 詳目顯示

研究生: 徐健真
Hsu, Chien-Chen
論文名稱: 有機磁性半導體—富勒烯與鈷的交互作用探討
Organic magneto-semiconductor: Interaction between Fullerene and Cobalt.
指導教授: 林文欽
Lin, Wen-Chin
口試委員: 莊子弘
Chuang, Tzu-Hung
藍彥文
Lan, Yann-Wen
林文欽
Lin, wen-chin
口試日期: 2022/07/14
學位類別: 碩士
Master
系所名稱: 物理學系
Department of Physics
論文出版年: 2022
畢業學年度: 110
語文別: 中文
論文頁數: 119
中文關鍵詞: 有機-磁性介面磁性半導體原子力顯微儀柯爾磁光效應拉曼光譜儀光致螢光光譜Co-C60 複合材料磁阻量測霍爾效應
英文關鍵詞: Organic-magnetic interface, Magnetic-semiconductor, MOKE, AFM, Co-C60 composite, Magnetoresistance, Raman spectrum, Photoluminescence, Hall effect
研究方法: 實驗設計法
DOI URL: http://doi.org/10.6345/NTNU202201493
論文種類: 學術論文
相關次數: 點閱:245下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 在自旋電子學中,磁性半導體是其中一個重要研究領域,其中有機材料與磁性材料的電子交互作用,是如何影響有機-磁性複合材料的磁性與電子傳輸行為,更是一個需要深入探討的領域。本研究使用物理氣相沉積法 ( Physical Vapor Deposition, PVD ),於超高真空系統 ( Ultra-High vacuum system, UHV ) 中,選擇在Al2O3 與Si兩種基板上,成長了C60/Co/C60與C60/Co的三層膜與雙層膜結構。透過探討薄膜磁性、表面形貌、光致螢光光譜( Photoluminescence, PL ) 與拉曼光譜 ( Raman Spectrum ) 、電壓-電流性質、磁阻響應與霍爾效應 ( Hall effect ) 在不同溫度的真空熱退火前後的變化,並以共鍍方式成長了不同比例的Co-C60 複合材料,並與上述退火實驗結果進行比較。
    本實驗分為兩大主軸,第一部分為C60薄膜與C60/Co 層膜在500 ℃ 下的真空退火,由表面形貌量測中,發現成長於Al2O3基板的C60/Co 雙層膜於退火後,形成了以Co原子為主的奈米島分區結構,以及C60 薄膜經過退火後,形成了近十奈米的原子團簇;在使用拉曼光譜分析碳基材料振動模式後,發現C60裂解為無定型碳的程度,因Co原子的參與下變得更高,說明了Co與C原子之間的交互作用,不僅增強了C60的裂解行為,同時限制了無定型碳的脫附行為;在磁滯曲線量測中,經過500 ℃ 退火後薄膜鐵磁行為明顯增強,包含了矯頑場 ( Coercivity, Hc ) 增大了至少5倍以上,以及薄膜由無磁性/順磁性轉變為鐵磁性;在光致螢光光譜量測中,可觀察到C60 與無定型碳之PL峰值強度皆受到Co原子的含量影響;在電壓-電流特性的量測中,注意到C60/Co 雙層膜無論退火前後皆屬於導體;在磁阻量測中,注意到退火後C60/Co 雙層膜磁阻率增大了將近50 %;在霍爾效應量測中,C60/Co 雙層膜經過500 ℃ 退火後,薄膜主要載子由電洞變為電子,並量測到載子濃度為2.32 × 1021 cm-3,載子遷移率為10.9 cm2V-1s-1。
    第二部分則是製作不同比例的Co-C60 複合材料,並注意到Co原子比例越低,薄膜內材料就以蕭特基接觸為主,以及C60分子的發光特性受到Co原子的熱蒸鍍過程破壞,最後則是C60在共鍍過程中受到Co-C60電子交互作用影響,導致C原子間的鍵能改變,進而改變C60的分子振動模式。
    上述實驗結果說明了Co與C60的交互作用增強了C60的裂解行為,且C60裂解後所形成的無定型碳,與Co原子混合後誘發了更明顯的磁性行為,同時在光學量測發現退火後的C60/Co仍保有半導體性質,暗示了只要適當調整Co原子與C60含量,就可利用真空退火製作出以Co-C為主成分的磁性半導體,對改善有機自旋閥中的電導率不匹配,具有相當大的潛力。

    In spintronics, magneto-semiconductor is an important part of the connection with spin and devices. To improve the conductivity mismatch between metal and organic semiconductor (OSC), the electrion interaction organic-magnetic interface is a potential solution. In this thesis, we choose Al2O3 and Si substrate to prepare C60/Co/C60 tri-layer and C60/Co bi-layer structure with physical vapor deposition in an ultra-high vacuum system. Through the analysis of morphology image, magnetism, Photoluminescence (PL), Raman spectrum, I-V curve, MR and Hall effect, we compare these results before and after annealing in vacuum.
    There are two main parts in the experiment setup. One is the annealing experiment of C60 thin film, C60/Co/C60 tri-layer and C60/Co bi-layer. During 1 hour annealing at 250 ℃, 500 ℃ and 750 ℃, morphology image show the nanostructural transition of C60/Co/Al2O3 and the columnar-like structure of C60 thin film after annealing at 500 ℃;MOKE reveal that the enhancement of magnetism in C60/Co and C60/Co/C60, such as the amplification of coercivity;PL exhibited cobalt atom reduced the PL intensity of C60;In the Raman spectrum analysis, we observe the characteristic peak shift of C60 which illustrate the formation of amorphous carbon;I-V curve show that C60/Co is a conductor weather it is annealed or not;MR show the MR ratio of C60/Co bi-layer enhanced about 50 % after annealing at 500 ℃;Hall effect measurement show that after annealing at 500 ℃, the majority carrier of C60/Co changed from hole to electron.
    The other part is the preparation of Co-C60 composites. First we notice that the lower content of cobalt would cause more schottky contact in the composites. Then we observet the chacteristics peak of C60 was reduced by the cobalt atom deposition by the PL measurement. Finally, the raman vibration mode of C60 is shift at least 20 cm-1 by the electrion interaction of cobalt and C60.
    The morphology show the interaction between cobalt and C60 enhance the formation of amorphous carbon. Annealing in vacuum contribute to the stronger magnetism due to the mixture of cobalt and amorphous carbon. In additional, PL and Raman show that semiconductor properties remain after annealing. By controlling the ratio of cobalt and C60, we can make Co-C magnetic-semiconductor by annealing in vacuum.

    第1章 緒論 1 1-1 C60簡介 1 1-1-1 發現 1 1-1-2 基本性質 3 1-1-3 應用領域 8 1-2 自旋電子學簡介 ( Spintronics introduction ) 9 1-2-1 自旋電子學與有機半導體[26] 9 1-2-2 有機自旋閥 ( Organic Spin valves ) 13 1-2-3 自旋介面交互作用 ( Spinterface )[13][26] 16 1-3 研究動機 18 1-3-1 C60與過渡金屬原子的介面交互作用 18 1-3-2 C60的熱處理 19 第2章 實驗技術與基礎原理 21 2-1 超高真空系統 ( Ultra-High Vacuum System ) 21 2-2 電子束熱蒸鍍法 ( E-beam Evaporation ) 23 2-3 磁滯曲線 ( Hysteresis loop ) 25 2-4 磁性物質 ( Magnetic materials ) 26 2-4-1 強磁 26 2-4-1-1 鐵磁性 ( Ferromagnetism ) 27 2-4-1-2 亞鐵磁性 ( Ferrimagnetism ) 28 2-4-2 弱磁 29 2-4-2-1 順磁性 ( Paramagnetism ) 29 2-4-2-2 抗磁性 ( Diamagnetism ) 29 2-4-2-3 反鐵磁性 ( Antiferromagnetism ) 30 2-5 磁異向性 ( Magnetic anisotropy ) 31 2-5-1 磁晶異向性 ( Magnetocrystalline anisotropy ) 32 2-5-2 形狀異向性 ( Shape anisotropy ) 32 2-5-3 誘導異向性 ( Induced anisotropy ) 32 2-5-4 應力異向性 ( Stress anisotropy ) 32 2-6 導電性質 ( Electrical properties ) 33 2-6-1 磁阻簡介 ( Magnetoresistance effect ) 33 2-6-1-1 常磁阻 ( Ordinary Magnetoresistance, OMR ) 34 2-6-1-2 異向性磁阻 ( Anisotropic Magnetoresistance, AMR ) 34 2-6-1-3 巨磁阻 ( Giant Magnetoresistance, GMR ) 35 2-6-1-4 超巨磁阻 ( Colossal Magnetoresistance, CMR ) 36 2-6-1-5 穿隧式磁阻 ( Tunneling Magnetoresistance, TMR ) 37 2-6-2 霍爾效應 ( Hall effect ) 39 第3章 儀器介紹 42 3-1 柯爾磁光效應顯微儀 ( Magnetic Optical Kerr Microscope ) 42 3-1-1 磁光效應緣起 42 3-1-2 柯爾磁光效應 ( Magneto Optical Kerr Effect, MOKE ) 原理 42 3-2 原子力顯微鏡 ( Atomic Force Microscopy, AFM ) 47 3-2-1 原子力顯微鏡緣起 47 3-2-2 原子力顯微鏡原理 47 3-2-3 原子力顯微鏡操作 48 3-2-3-1 接觸模式( Contact Mode ) 49 3-2-3-2 非接觸模式( Non-contact Mode ) 49 3-2-3-3 輕敲模式( Tapping Mode ) 49 3-3 光致螢光光譜儀 ( Photoluminescence, PL ) 50 3-3-1 光致螢光原理 50 3-4 拉曼光譜儀 ( Raman Spectrum ) 52 3-4-1 拉曼光譜原理 52 3-5 電性量測 ( Electrical properties measurement ) 53 第4章 實驗設計 54 4-1 基板清潔 ( Preclean ) 54 4-1-1 基板擦拭 54 4-1-2 超音波震洗 54 4-2 薄膜成長 55 4-2-1 超高真空環境 55 4-2-2 鍍膜速率校正 55 4-2-3 圖案化沉積 56 4-3 量測與退火流程 58 4-3-1 樣品結構與量測項目 58 4-3-2 真空退火流程 59 第5章 實驗結果與討論 60 5-1 10 nm C60分別在Co薄膜、矽基板及藍寶石基板上成長後,經500 ℃,1小時高真空退火後的形貌分析 60 5-1-1 討論:高真空退火對薄膜形貌造成的影響 63 5-1-2 討論:Co-C新型複合材料的形成可能性 64 5-2 10 nm C60分別在Co薄膜、矽基板及藍寶石基板成長後,經500℃,1小時高真空退火後的拉曼光譜比較 65 5-2-1 討論:C60分子振動模式經退火後發生的變化 67 5-2-2 討論:C60裂解行為的增強與Co原子之間的關係 67 5-3 10 nm C60分別在Co薄膜、矽基板上成長後, 經500℃,1小時高真空退火後的光致螢光光譜比較 68 5-3-1 討論:高真空退火對薄膜半導體性質造成的影響 70 5-4 C60 / Co層膜經500 ℃,1小時高真空退火前後的磁滯曲線比較 73 5-4-1 討論:高真空退火後,薄膜磁性行為的變化 78 5-5 C60 / Co層膜經500℃,1小時高真空退火後的電學性質 82 5-5-1 電壓-電流特性 82 5-5-2 磁阻響應 84 5-5-3 霍爾效應 85 5-5-4 討論:C60 / Co 雙層膜於退火前後的電學性質 88 5-6 Co-C60複合材料與C60 / Co層膜的表面形貌、磁性、光學性質比較 91 5-6-1 以不同比例成長之Co-C60複合材料表面形貌 91 5-6-1-1 Co-C60複合材料與C60 / Co層膜的表面形貌整理 93 5-6-2 以不同比例成長Co-C60複合材料之磁性行為 94 5-6-3 以不同比例成長之Co-C60複合材料光學性質 95 5-6-3-1 拉曼光譜比較 95 5-6-3-2 光致螢光光譜比較 96 5-6-4 討論:由Co-C60複合材料成長所觀察到的現象整理 97 5-7 Co-C60複合材料的電學性質 100 5-7-1 Co-C60複合材料電壓-電流曲線 100 5-7-2 Co-C60複合材料的磁阻響應 101 5-7-3 討論:Co比例對Co-C60複合材料電學性質的影響 101 第6章 結論與未來展望 103 6-1 結論 103 6-2 未來展望 104 第7章 參考資料 105 第8章 補充資料 112 8-1 C60 拉曼振動模式種類 112 8-2 以C60 為間隔層的有機自旋閥應用[83,84,85] 113 8-3 C60 在不同基板上脫附所需的溫度 115 8-4 Co-C60 複合材料之相關研究 116

    [1] Buckminsterfullerene-perspective-3D-balls.png. (2020, September 22). Wikimedia Commons, the free media repository.
    [2] Osawa, E., Kroto, H. W., Fowler, P. W., & Wasserman, E. (1993). The Evolution of the Football Structure for the C60 Molecule: A Retrospective. Philosophical Transactions: Physical Sciences and Engineering, 1-8.
    [3] Iijima, S. (1980). Direct observation of the tetrahedral bonding in graphitized carbon black by high resolution electron microscopy. Journal of Crystal Growth, 50(3), 675-683.
    [4] Biosphère Montréal.jpg. (2021, September 2). Wikimedia Commons, the free media repository.
    [5] Krätschmer, W., Lamb, L., Fostiropoulos, K. et al. Solid C60: a new form of carbon. Nature 347, 354–358 (1990).
    [6] Scrivens, W. A., Bedworth, P. V., & Tour, J. M. (1992). Purification of gram quantities of C60. A new inexpensive and facile method. Journal of the American Chemical Society, 114(20), 7917-7919.
    [7] Berkai, Z., Mendil, N., & Belghachi, A. (2015). Theoretical study of fullerene (C60) force field at room temperature. Energy Procedia, 74, 59-64.
    [8] Lin, R., Wang, F., Wohlgenannt, M., He, C., Zhai, X., & Suzuki, Y. (2011). Organic spin-valves based on fullerene C60. Synthetic metals, 161(7-8), 553-557.
    [9] Rabenau, T., Simon, A., Kremer, R. K., & Sohmen, E. (1993). The energy gaps of fullerene C60 and C70 determined from the temperature dependent microwave conductivity. Zeitschrift für Physik B Condensed Matter, 90(1), 69-72.
    [10] Mort, J., Ziolo, R., Machonkin, M., Huffman, D. R., & Ferguson, M. I. (1991). Electrical conductivity studies of undoped solid films of C60/70. Chemical physics letters, 186(2-3), 284-286.
    [11] Wen, C., Li, J., Kitazawa, K., Aida, T., Honma, I., Komiyama, H., & Yamada, K. (1992). Electrical conductivity of a pure C60 single crystal. Applied physics letters, 61(18), 2162-2163.
    [12] Frankevich, E., Maruyama, Y., & Ogata, H. (1993). Mobility of charge carriers in vapor-phase grown C60 single crystal. Chemical physics letters, 214(1), 39-44.
    [13] 李宗勳(2009)。有機半導體磁光電效應與界面特性分析。國立成功大學物理學系碩博士班博士論文,台南市。 取自https://hdl.handle.net/11296/5fp6h5
    [14] HOMO/LUMO-Wikipedia
    ( https://zh.wikipedia.org/zh-tw/HOMO/LUMO )
    [15] Jarrett, C. P., Pichler, K., Newbould, R., & Friend, R. H. (1996). Transport studies in C60 and C60/C70 thin films using metal-insulator-semiconductor field-effect transistors. Synthetic metals, 77(1-3), 35-38.
    [16] Dresselhaus, M. S., Dresselhaus, G., & Eklund, P. C. (1996). Science of fullerenes and carbon nanotubes: their properties and applications. Elsevier.
    [17] Prassides, K., Kroto, H. W., Taylor, R., Walton, D. R. M., David, W. I. F., Tomkinson, J., ... & Murphy, D. W. (1992). Fullerenes and fullerides in the solid state: Neutron scattering studies. Carbon, 30(8), 1277-1286.
    [18] Prassides, K. (1993). Neutron scattering and μSR studies of fullerenes and their derivatives. Physica Scripta, 1993(T49B), 735.
    [19] Peimo, H., Yabo, X., Xuejia, Z., Xinbin, Z., & Wenzhou, L. (1993). Electrical conductivity studies of a pure C60 single crystal. Journal of Physics: Condensed Matter, 5(37), 7013.
    [20] Arai, T., Murakami, Y., Suematsu, H., Kikuchi, K., Achiba, Y., & Ikemoto, I. (1992). Resistivity of single crystal C60 and effect of oxygen. Solid state communications, 84(8), 827-829.
    [21] Sundar, C. S., Bharathi, A., Hariharan, Y., Janaki, J., Sastry, V. S., & Radhakrishnan, T. S. (1992). Thermal decomposition of C60. Solid state communications, 84(8), 823-826.
    [22] Menéndez, J., & Page, J. B. (2000). Vibrational spectroscopy of C 60. Light Scattering in Solids VIII, 27-95.
    [23] Duclos, S. J., Haddon, R. C., Glarum, S. H., Hebard, A. F., & Lyons, K. B. (1991). The influence of oxygen on the Raman spectrum of C60 films. Solid state communications, 80(7), 481-484.
    [24] Palstra, T. T. M., Haddon, R. C., Hebard, A. F., & Zaanen, J. (1992). Electronic transport properties of K3C60 films. Physical review letters, 68(7), 1054.
    [25] Hummelen, J. C., Knight, B. W., LePeq, F., Wudl, F., Yao, J., & Wilkins, C. L. (1995). Preparation and characterization of fulleroid and methanofullerene derivatives. The Journal of Organic Chemistry, 60(3), 532-538.
    [26] Geng, R., Luong, H. M., Daugherty, T. T., Hornak, L., & Nguyen, T. D. (2016). A review on organic spintronic materials and devices: II. Magnetoresistance in organic spin valves and spin organic light emitting diodes. Journal of Science: Advanced Materials and Devices, 1(3), 256-272.
    [27] Spin-Transistor Electronics: An Overview and Outlook、S.Maekawa, S. O. Valenzuela, E. Saitoh, T. Kimura, T., Spin Current, 2nd ed., Oxford: Oxford University, (2012).、S.Wolf, S. A. et al., Science, 294, 1488 (2001)
    [28] Please refer to the website:http://ssp.phys.kyushu-u.ac.jp/research_en.html
    [29] Oestreich, M., Bender, M., Hübner, J., Hägele, D., Rühle, W. W., Hartmann, T., ... & Stolz, W. (2002). Spin injection, spin transport and spin coherence. Semiconductor science and technology, 17(4), 285.
    [30] Cinchetti, M., Heimer, K., Wüstenberg, J. P., Andreyev, O., Bauer, M., Lach, S., ... & Aeschlimann, M. (2009). Determination of spin injection and transport in a ferromagnet/organic semiconductor heterojunction by two-photon photoemission. Nature materials, 8(2), 115-119.
    [31] Sun, D., Ehrenfreund, E., & Vardeny, Z. V. (2014). The first decade of organic spintronics research. Chemical communications, 50(15), 1781-1793.
    [32] Ando, K., Takahashi, S., Ieda, J., Kajiwara, Y., Nakayama, H., Yoshino, T., ... & Saitoh, E. (2011). Inverse spin-Hall effect induced by spin pumping in metallic system. Journal of applied physics, 109(10), 103913.
    [33] Watanabe, S., Ando, K., Kang, K., Mooser, S., Vaynzof, Y., Kurebayashi, H., ... & Sirringhaus, H. (2014). Polaron spin current transport in organic semiconductors. Nature Physics, 10(4), 308-313.
    [34] Sugahara, S., & Nitta, J. (2010). Spin-transistor electronics: An overview and outlook. Proceedings of the IEEE, 98(12), 2124-2154.
    [35] Niu, L. B., Chen, L. J., Chen, P., Cui, Y. T., Zhang, Y., Shao, M., & Guan, Y. X. (2016). Hyperfine interaction vs. spin–orbit coupling in organic semiconductors. RSC advances, 6(112), 111421-111426.
    [36] Yu, Z. G., Ding, F., & Wang, H. (2013). Hyperfine interaction and its effects on spin dynamics in organic solids. Physical Review B, 87(20), 205446.
    [37] Guo, L., Qin, Y., Gu, X., Zhu, X., Zhou, Q., & Sun, X. (2019). Spin transport in organic molecules. Frontiers in Chemistry, 7, 428.
    [38] Liang, S., Geng, R., Yang, B., Zhao, W., Chandra Subedi, R., Li, X., ... & Nguyen, T. D. (2016). Curvature-enhanced spin-orbit coupling and spinterface effect in fullerene-based spin valves. Scientific reports, 6(1), 1-9.
    [39] Soulen Jr, R. J., Byers, J. M., Osofsky, M. S., Nadgorny, B., Ambrose, T., Cheng, S. F., ... & Coey, J. M. D. (1998). Measuring the spin polarization of a metal with a superconducting point contact. science, 282(5386), 85-88.
    [40] 葉昭輝(2009)。有機自旋閥(CrO2/C60/CrO2)元件製備與傳輸特性之研究。國立清華大學電子工程研究所碩士論文,新竹市。 取自https://hdl.handle.net/11296/v49p4k
    [41] 胡裕民, “III-V 稀磁性半導體薄膜之研究與發展”, 物理雙月刊二十六卷四期, P.587 (2004)
    [42] Ohno, H., Chiba, A. D., Matsukura, A. F., Omiya, T., Abe, E., Dietl, T., ... & Ohtani, K. (2000). Electric-field control of ferromagnetism. Nature, 408(6815), 944-946.
    [43] Yamanouchi, M., Chiba, D., Matsukura, F., & Ohno, H. (2004). Current-induced domain-wall switching in a ferromagnetic semiconductor structure. Nature, 428(6982), 539-542.
    [44] Moorsom, T., Wheeler, M., Khan, T. M., Al Ma’Mari, F., Kinane, C., Langridge, S., ... & Cespedes, O. (2014). Spin-polarized electron transfer in ferromagnet/C 60 interfaces. Physical Review B, 90(12), 125311.
    [45] Sharangi, P., Gargiani, P., Valvidares, M., & Bedanta, S. (2021). Magnetism at the interface of non-magnetic Cu and C 60. Physical Chemistry Chemical Physics, 23(11), 6490-6495.
    [46] Jayatissa, A. H., Gupta, T., & Pandya, A. D. (2004). Heating effect on C60 films during microfabrication: structure and electrical properties. Carbon, 42(5-6), 1143-1146.
    [47] Dorner-Reisel, A., Ritter, U., Moje, J., Freiberger, E., & Scharff, P. (2022). Effect of fullerene C60 thermal and tribomechanical loading on Raman signals. Diamond and Related Materials, 126, 109036.
    [48] 陳廷豪(2021)。無機鹵素鈣鈦礦/磁性金屬薄膜-雙層異質結構之形貌、磁性及熱穩定性分析。國立臺灣師範大學物理學系學位論文。
    [49] 伍秀菁、汪若文與林美吟(2001)。真空技術與應用。行政院國家科學委員會精密儀器發展中心。
    [50] Chukwuchekwa, N. (2011). Investigation of magnetic properties and Barkhausen noise of electrical steel (Doctoral dissertation, Cardiff University).
    [51] 尹浚翰(2021)。鐵鈀合金在石墨烯上的表面形貌與磁性。國立臺灣師範大學物理學系學位論文。
    [52] Kittel, Charles. Introduction to Solid State Physics, 7th Edition. Wiley. : P.422. ISBN 0-471-11181-3
    [53] 廖黎杰(2021)。鐵鈀合金薄膜在氫化效應下旋轉磁異向性。國立臺灣師範大學物理學系學位論文。
    [54] Thomson, W. (1857). XIX. On the electro-dynamic qualities of metals:—Effects of magnetization on the electric conductivity of nickel and of iron. Proceedings of the Royal Society of London, (8), 546-550.
    [55] 吳柄村(2021)。鈣鈦礦與鐵磁層交互作用與磁阻元件製作。國立臺灣師範大學物理學系學位論文。
    [56] 吳宗展(2002)。龐磁阻磁穿隧之研究。國立中山大學物理學系研究所碩士論文,高雄市。 取自https://hdl.handle.net/11296/zsr9as
    [57] Giuliani, G. (2008). A general law for electromagnetic induction. EPL (Europhysics Letters), 81(6), 60002.
    [58] Baibich, M. N., Broto, J. M., Fert, A., Van Dau, F. N., Petroff, F., Etienne, P., ... & Chazelas, J. (1988). Giant magnetoresistance of (001) Fe/(001) Cr magnetic superlattices. Physical review letters, 61(21), 2472.
    [59] Binasch, G., Grünberg, P., Saurenbach, F., & Zinn, W. (1989). Enhanced magnetoresistance in layered magnetic structures with antiferromagnetic interlayer exchange. Physical review B, 39(7), 4828.
    [60] von Helmolt, R., Wecker, J., Holzapfel, B., Schultz, L., & Samwer, K. (1993). Giant negative magnetoresistance in perovskitelike La 2/3 Ba 1/3 MnO x ferromagnetic films. Physical Review Letters, 71(14), 2331.
    [61] Ramirez, A. P. (1997). Colossal magnetoresistance. Journal of Physics: Condensed Matter, 9(39), 8171.
    [62] Julliere, M. (1975). Tunneling between ferromagnetic films. Physics letters A, 54(3), 225-226.
    [63] https://www.wikiwand.com/zh-mo/隧道磁阻
    [64] 穿隧式磁阻-高瞻自然科學教學平台
    https://highscope.ch.ntu.edu.tw/wordpress/?p=1601
    [65] Hall, E. H. (1879). On a new action of the magnet on electric currents. American Journal of Mathematics, 2(3), 287-292.
    [66] 徐凱霖(2017)。鐵磁薄膜誘發富勒烯XMCD之磁性探討。國立臺灣師範大學物理學系學位論文。
    [67] Qiu, Z. Q., & Bader, S. D. (1999). Surface magneto-optic Kerr effect (SMOKE). Journal of magnetism and magnetic materials, 200(1-3), 664-678.
    [68] 顯微鏡發展歷史–掃描穿隧式顯微鏡的誕生-高瞻自然科學教學平台
    https://highscope.ch.ntu.edu.tw/wordpress/?p=22561
    [69] 張玟翔(2021)。使用接觸式原子力顯微鏡在石墨烯/二硫化鉬異質結構上製造圖案化的光致螢光。國立臺灣師範大學物理學系學位論文。
    [70] 謝嘉民、賴一凡、林永昌、枋志堯(2005)。光激發螢光量測的原理、架構及應用。科儀新知,(146),39-51。doi:10.29662/IT.200506.0005
    [71] Raman energy levels.svg. (2020, 10月 8). Wikimedia Commons, . Retrieved 05:41, 7月 3, 2022 from https://commons.wikimedia.org/w/index.php?title=File:Raman_energy_levels.svg&oldid=484449652
    [72] 何宜蓉、葉明功、湯松陵(2010)。奈米科技:奈米金之臨床應用與發展。The journal of Taiwan pharmacy Vol.26 No.4 Dec. 31 2010
    [73] 馬康耀(2020)。利用雷射對富勒烯/二硫化鉬異質結構的效應雕製微觀圖形。國立臺灣師範大學物理學系學位論文。
    [74] Yang, S. T., Yang, T. H., Lu, C. I., Chang, W. H., Simbulan, K. B., & Lan, Y. W. (2021). Room temperature negative differential resistance in clay-graphite paper transistors. Carbon, 176, 440-445.
    [75] Cuong, T. V., Pham, V. H., Tran, Q. T., Hahn, S. H., Chung, J. S., Shin, E. W., & Kim, E. J. (2010). Photoluminescence and Raman studies of graphene thin films prepared by reduction of graphene oxide. Materials letters, 64(3), 399-401.
    [76] Rosenberg, A., & Peebles, D. L. (1995). Luminescence of C60 adsorbed on Ag and In surfaces. Chemical physics letters, 234(1-3), 221-226.
    [77] Ferrari, A. C., & Robertson, J. (2000). Interpretation of Raman spectra of disordered and amorphous carbon. Physical review B, 61(20), 14095.
    [78] Lavrentiev, V., Abe, H., Yamamoto, S., Naramoto, H., & Narumi, K. (2002). Formation of carbon nanotubes under conditions of Co+ C60 film. Physica B: Condensed Matter, 323(1-4), 303-305.
    [79] Huq, A., Stephens, P. W., Bendele, G. M., & Ibberson, R. M. (2001). Polymeric fullerene chains in RbC60 and KC60. Chemical physics letters, 347(1-3), 13-22.
    [80] Miwa, S., Shiraishi, M., Tanabe, S., Mizuguchi, M., Shinjo, T., & Suzuki, Y. (2007). Tunnel magnetoresistance of C 60− Co nanocomposites and spin-dependent transport in organic semiconductors. Physical Review B, 76(21), 214414.
    [81] Menéndez, J., & Page, J. B. (2000). Vibrational spectroscopy of C 60. Light Scattering in Solids VIII, 27-95.
    [82] https://www.public.asu.edu/~cosmen/C60_vibrations/mode_assignments.htm
    [83] Zhang, X., Mizukami, S., Kubota, T., Ma, Q., Oogane, M., Naganuma, H., ... & Miyazaki, T. (2013). Observation of a large spin-dependent transport length in organic spin valves at room temperature. Nature communications, 4(1), 1-7.
    [84] Li, F., Li, T., Chen, F., & Zhang, F. (2014). Spin injection and transport in organic spin-valves based on fullerene C60. Organic Electronics, 15(7), 1657-1663.
    [85] Nguyen, T. D., Wang, F., Li, X. G., Ehrenfreund, E., & Vardeny, Z. V. (2013). Spin diffusion in fullerene-based devices: Morphology effect. Physical Review B, 87(7), 075205.
    [86] Maxwell, A. J., Brühwiler, P. A., Arvanitis, D., Hasselström, J., Johansson, M. J., & Mårtensson, N. (1998). Electronic and geometric structure of C 60 on Al (111) and Al (110). Physical Review B, 57(12), 7312.
    [87] Lavrentiev, V., Abe, H., Yamamoto, S., Naramoto, H., & Narumi, K. (2003). Formation of promising Co–C nanocompositions. Surface and Interface Analysis: An International Journal devoted to the development and application of techniques for the analysis of surfaces, interfaces and thin films, 35(1), 36-39.
    [88] Sakai, S., Naramoto, H., Xu, Y., Priyanto, T. H., Lavrentiev, V., & Narumi, K. (2003). Structure Evolution and Corresponding Electrical Properties in Weakly Bound Co-C60 Mixture. MRS Online Proceedings Library (OPL), 788.
    [89] Lavrentiev, V., Abe, H., Naramoto, H., Sakai, S., & Narumi, K. (2006). Polymeric chains in C60 and Co mixture. Chemical physics letters, 424(1-3), 101-104.
    [90] Lavrentiev, V., Vacik, J., Naramoto, H., & Sakai, S. (2010). Thermal effect on structure organizations in cobalt-fullerene nanocomposition. Journal of Nanoscience and Nanotechnology, 10(4), 2624-2629.

    無法下載圖示 電子全文延後公開
    2027/09/16
    QR CODE