簡易檢索 / 詳目顯示

研究生: 洪翊師
HONG, Yi-Shih
論文名稱: 觀察者運動方式對黑洞剪影大小所造成的影響
The Effects of Observers' Motions on the Size of Black Hole Shadows
指導教授: 卜宏毅
Pu, Hung-Yi
口試委員: 李沃龍
LEE, Wo-Lung
齊祖康
CHYI, Tzuu-Kang
卜宏毅
PU, Hung-Yi
口試日期: 2023/05/30
學位類別: 碩士
Master
系所名稱: 物理學系
Department of Physics
論文出版年: 2023
畢業學年度: 111
語文別: 中文
論文頁數: 51
中文關鍵詞: 相對論史瓦西度規黑洞剪影數值計算座標轉換
英文關鍵詞: Theory of relativity, Schwarzschild black hole, Black hole shadow, Numeral Calculations, Coordinate transformation
研究方法: 實驗設計法
DOI URL: http://doi.org/10.6345/NTNU202301019
論文種類: 學術論文
相關次數: 點閱:74下載:7
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 黑洞與彎曲時空一直都是大眾喜愛的概念,如何將黑洞附近的彎曲時空 視覺化以及理解黑洞剪影特性皆是極具有科普價值的主題。在此論文中, 我們利用標架建立了在靜止黑洞附近史瓦西時空中運動的觀察者所接收到 光線的初始條件,計算測地線方程式並得到光線的軌跡,藉以探討黑洞剪 影的大小如何隨著觀察的位置與運動方式而改變。我們利用數值方法與半 解析解討論了黑洞剪影為何對在同樣位置但不同運動狀態的觀測者有不同 的張角,並示範了如何運用計算模擬算出觀察者在黑洞附近所看見的全天 影像。建立此全天圖的計算工具將可應用於虛擬實境的科普用途。

    Black holes and curved space-time have always been popular con- cepts. How to visualize the curved space-time near black holes and understand the characteristics of black hole shadow is indeed a topic of great scientific value for popular science. In this paper, we use the tetrad to establish the initial condition of the light received by the observer moving in the Schwarzschild space-time near the static black hole, calculate the geodesic equation and then obtain the trajectory of the light, so as to inquire about the size of the black hole shadow changes with the location and motion of the observer. We use numerical methods and semi-analytical solution to discuss why the black hole shadow has different opening angles for observers at the same position but in different motion states, and demonstrate how to use computational simulations to calculate the full-sky image seen by observers near the black hole. Computational tools for building such an all-sky map will be applicable to popular science paths in virtual reality environments.

    謝誌 i 摘要 ii Abstract iii 目次 iv 表次 vi 圖次 vii 1緒論 1 2狹義相對論與平坦時空 2 2.1度規(metric) 2 2.2 閔考斯基度規(Minkowski metric) 2 2.3 勞倫斯轉換(LorentzTransformation) 3 2.4 光行差(aberration of light) 4 2.5 四速度(four-velocity)和四動量(four-momentum) 5 3廣義相對論與靜止黑洞附近的彎曲時空 7 3.1 史瓦西(Schwarzschild)度規 7 3.2標架(Tetrad) 7 3.3 光子在史瓦西時空中的測地線(geodesic) 8 3.4史瓦西黑洞剪影 9 4數值計算方法 12 4.1觀察者的運動方式 12 4.1.1 懸停觀測者(hoveringobserver) 12 4.1.2 自由落體觀測者(free-fallingobserver) 12 4.2觀察者接受到的光線所具有的初始條件 13 5結果與討論 18 5.1 觀察者接收光線與發射光線的差異 18 5.2 不同運動方式的觀察者在黑洞附近接收到的光線 19 5.3 不同運動方式的觀察者所觀察到的黑洞剪影大小 25 5.4 黑洞在全天圖下的視覺效果 28 5.5 撞擊參數與黑洞剪影的關係 36 6結論及展望 46 參考文獻 47 A光線路徑計算 50 A.1龍格-庫塔(Runge-Kutta)方法 50 A.2 龍格-庫塔法的誤差適應調控(AdaptivesizeRK5) 50

    [Bernard 2009] Bernard Schutz, A First Course in GENERAL RELATIV- ITY Second Edition(2009)
    [Chandrasekhar 1983] Chandrasekhar, S.The International Series of Mono- graphs on Physics, Oxford: Clarendon Press, (1983).
    [Dexter 2016] Dexter, J. 2016. A public code for general relativistic, po- larised radiative transfer around spinning black holes. Monthly Notices of the Royal Astronomical Society 462, 115–136. doi:10.1093/mnras/ stw1526
    [Davelaar et al. 2018] Davelaar, J., Bronzwaer, T., Kok, D., Younsi, Z., Mościbrodzka, M., Falcke, H. 2018. Observing supermassive black holes in virtual reality. Computational Astrophysics and Cosmology 5. doi:10.1186/s40668-018-0023-7
    [Edwin 2000] Edwin F. Taylor,John Archibald Wheeler EXPLORING BLACK HOLES Inrtoduction to General Relativity (2000)
    [Event Horizon Telescope Collaboration et al. 2019a] Event Horizon Tele- scope Collaboration and 348 colleagues 2019. First M87 Event Horizon Telescope Results. I. The Shadow of the Supermassive Black Hole. The Astrophysical Journal 875. doi:10.3847/2041-8213/ab0ec7
    [2019b] Event Horizon Telescope Collaboration and 341 colleagues 2019. First M87 Event Horizon Telescope Results. II. Array and Instrumenta- tion. The Astrophysical Journal 875. doi:10.3847/2041-8213/ab0c96
    [2019c] Event Horizon Telescope Collaboration and 217 colleagues 2019. First M87 Event Horizon Telescope Results. III. Data Processing and Cal- ibration. The Astrophysical Journal 875. doi:10.3847/2041-8213/ab0c57
    [2019d] Event Horizon Telescope Collaboration and 215 colleagues 2019. First M87 Event Horizon Telescope Results. IV. Imaging the Central Su- permassive Black Hole. The Astrophysical Journal 875. doi:10.3847/2041- 8213/ab0e85
    [2019e] Event Horizon Telescope Collaboration and 221 colleagues 2019. First M87 Event Horizon Telescope Results. V. Physical Origin of the Asymmetric Ring. The Astrophysical Journal 875. doi:10.3847/2041-8213/ ab0f43
    [2019f] EventHorizonTelescopeCollaborationand214colleagues2019.First M87 Event Horizon Telescope Results. VI. The Shadow and Mass of the Central Black Hole. The Astrophysical Journal 875. doi:10.3847/2041- 8213/ab1141
    [2022a] Event Horizon Telescope Collaboration and 388 colleagues 2022. First Sagittarius A* Event Horizon Telescope Results. I. The Shadow of the Supermassive Black Hole in the Center of the Milky Way. The Astro- physical Journal 930. doi:10.3847/2041-8213/ac6674
    [2022b] Event Horizon Telescope Collaboration and 336 colleagues 2022. First Sagittarius A* Event Horizon Telescope Results. II. EHT and Mul- tiwavelength Observations, Data Processing, and Calibration. The Astro- physical Journal 930. doi:10.3847/2041-8213/ac6675
    [2022c] Event Horizon Telescope Collaboration and 270 colleagues 2022. First Sagittarius A* Event Horizon Telescope Results. III. Imaging of the Galactic Center Supermassive Black Hole. The Astrophysical Journal 930. doi:10.3847/2041-8213/ac6429
    [2022d] Event Horizon Telescope Collaboration and 269 colleagues 2022. First Sagittarius A* Event Horizon Telescope Results. IV. Variabil- ity, Morphology, and Black Hole Mass. The Astrophysical Journal 930. doi:10.3847/2041-8213/ac6736
    [2022e] Event Horizon Telescope Collaboration and 274 colleagues 2022. First Sagittarius A* Event Horizon Telescope Results. V. Testing Astro- physical Models of the Galactic Center Black Hole. The Astrophysical Journal 930. doi:10.3847/2041-8213/ac6672
    [2022f] Event Horizon Telescope Collaboration and 270 colleagues 2022. First Sagittarius A* Event Horizon Telescope Results. VI. Testing the Black Hole Metric. The Astrophysical Journal 930. doi:10.3847/2041-8213/ ac6756
    [Fuerst & Wu 2004] Fuerst, S. V., Wu, K. 2004. Radiation transfer of emis- sion lines in curved space-time. Astronomy and Astrophysics 424, 733– 746. doi:10.1051/0004-6361:20035814
    [James et al. 2015] James, O., Tunzelmann, E. von ., Franklin, P., Thorne, K. S. 2015. Gravitational lensing by spinning black holes in astro- physics, and in the movie Interstellar. Classical and Quantum Gravity 32. doi:10.1088/0264-9381/32/6/065001
    [Pu, Akiyama, & Asada 2016] Pu, H.-Y., Akiyama, K., Asada, K. 2016. The Effects of Accretion Flow Dynamics on the Black Hole Shadow of Sagittar- ius A*. The Astrophysical Journal 831. doi:10.3847/0004-637X/831/1/4
    [Pu et al. 2016] Pu, H.-Y., Yun, K., Younsi, Z., Yoon, S.-J. 2016. Odyssey: A Public GPU-based Code for General Relativistic Radiative Transfer in Kerr Spacetime. The Astrophysical Journal 820. doi:10.3847/0004-637X/ 820/2/105
    [Rybicki 1991] Rybicki, George B., and Alan P. Lightman. Radiative pro- cesses in astrophysics. John Wiley & Sons, (1991).
    [Vetterling 2002] Vetterling, William T., et al. Numerical recipes example book (c++): The art of scientific computing. Cambridge University Press, (2002).

    下載圖示
    QR CODE