研究生: |
楊東穎 Yang, Dong-Ying |
---|---|
論文名稱: |
廣視野數位全像顯微系統最佳化解析度及其光學檢測應用 Wide-field digital holographic microscopy with optimized resolution and its application in optical inspection |
指導教授: |
鄭超仁
Cheng, Chau-Jern 杜翰艷 Tu, Han-Yen |
學位類別: |
碩士 Master |
系所名稱: |
光電工程研究所 Graduate Institute of Electro-Optical Engineering |
論文出版年: | 2017 |
畢業學年度: | 105 |
語文別: | 中文 |
論文頁數: | 60 |
中文關鍵詞: | 數位全像顯微術 、廣視野 、視野範圍 、升採樣 、空間帶寬乘積 、參考球面波 |
英文關鍵詞: | wide-field, field of view, pixel resolution, up-sampling, point source reference wave, space bandwidth product |
DOI URL: | https://doi.org/10.6345/NTNU202202589 |
論文種類: | 學術論文 |
相關次數: | 點閱:120 下載:0 |
分享至: |
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
本論文主要探討如何在廣視野數位全像顯微術達成系統最佳化解析度的目的,利用光學空間帶寬乘積與高空間頻率繞射光與參考點光源傳播方向之干涉角度的分析,設計最佳化參數來提升系統的橫向解析度。一般廣視野的系統會受限於光感測元件,因此使用放大倍率小於1的4f系統,來突破光感測元件視野範圍之限制,但光場經過縮束後會遇到像點解析度與橫向解析度不足的問題,因此以紀錄菲涅爾全像片結合升採樣技術,提升重建平面上的像點解析度,並以空間帶寬乘積,探討其最佳化的記錄距離,使系統能達到較大的視野範圍且橫向解析度接近光學解析度。提升像點解析度與橫向解析度後,可以使原本只能解析 線寬13.92um提升至8.77um,視野範圍可達25mmX25mm。
本研究探討光感測元件的限制以及優化系統解析度,並建立一套玻璃基板的定量化瑕疵檢測之原型機台,具備廣視野單次曝光與即時三維高解析度顯微成像的功能,並可突破影像感測器的像素大小與像素總數的光學偵測限制。最後,設計一五吋光場之廣視野數位全像顯微系統並探討其問題與解決方案,以增加未來光學檢測應用層面的潛力。
We propose a wide-field digital holographic microscopy system to enhance the field of view. In wide-field system, the field of view is limited by image sensor. So we use telescope to enhance the field of view. To resolve the low pixel resolution, we use up-sampling method in Fresnel transform to enhance the pixel resolution in reconstruction plane. Then, to enhance the lateral resolution, we use spherical reference wave to product the additional magnification in spectrum plane. And using space bandwidth product and high spatial frequency with spherical reference wave to analysis the optimized recording distance in WF-DHM, It’s can get the high resolution and keep the wide field of view. After enhancing the pixel resolution and found the optimized recording distance, we can get the lateral resolution from 13.92um becomes to 8.77um and FOV can reach to 25mm X 25mm. Finally. We have established a prototype for glass substrate quantitative defect detection, with a wide field of view and real-time three-dimensional high-resolution imaging capabilities. Finally, design the FOV about five-inch of the wide field system to explore its problems and solutions to increase the potential of optical detection applications in the future.
[1] D. Gabor, “A New Microscopic Principle,” Nature 161, 777-778 (1948).
[2] Emmett N. Leith and Juris Upatnieks, “Reconstructed Wavefronts and Communication Theory,” J. Opt. Soc. Am. 52, 1123-1130 (1962).
[3] J. W. Goodman and R. W. Lawrence, “Digital image formation from electronically detected holograms,” Appl. Phys. Lett. 11, 77 (1967).
[4] Tong Zhang and Ichirou Yamaguchi, “Three-dimensional microscopy with phase-shifting digital holography,” Opt. Lett. 23, 1221-1223 (1998).
[5] U. Schnars and W. Jüptner, ”Direct recording of holograms by a CCD target and numerical reconstruction,” Appl. Opt. 2, 179-181 (1994).
[6] I. Yamaguchi and T. Zhang, “Phase-shifting digital holography,” Opt. Lett. 22, 1268-1270, (1997).
[7] E. Cuche, F. Bevilacqua, and C. Depeursinge, “Digital holography for quantitative phase-contrast imaging,” Opt. Lett. 24, 291-293 (1999).
[8] E. Cuche, P. Marquet, and C. Depeursinge, “Simultaneous amplitude-contrast and quantitative phase-contrast microscopy by numerical reconstruction of Fresnel off-axis holograms,” Appl. Opt. 34, 6994-7001 (1999).
[9] W. Xu, M. H. Jericho, I. A. Meinertzhagen, and H. J. Kreuzer, “Digital in-line holography of microspheres,” Appl. Opt. 41, 5367-5375 (2002).
[10] M. Lee, O. Yaglidere, and A. Ozcan, “Field-portable reflection and transmission microscopy based on lensless holography,” Biomed. Opt. Express. 2, 2721-2730 (2011).
[11] W. Bishara, T. W. Su, A. F. Coskun, and A. Ozcan, “Lensfree on-chip microscopy over a wide field of-view using pixel super-resolution,” Opt. Express. 11, 11181-11191 (2010).
[12] A. Greenbaum, W. Luo, B. Khademhosseinieh, T. W. Su, A. F. Coskun and A. Ozcan, “Increased space-bandwidth product in pixel super-resolved lensfree on-chip microscopy,” SCIENTIFIC REPORTS 3, 1717 (2013).
[13] W. Luo, A. Greenbaum, Y. B. Zhang and A. Ozcan, “Synthetic aperture-based on-chip microscopy,” Light: Sci Applic 2015, 4, e261 (2015).
[14] S. N. A. Morel, A. Delon, P. Blandin, T. Bordy, O. Cioni, L. Hervé, C. Fromentin, J. Dinten and C. Allier, “Wide-Field Lensfree Imaging of Tissue Slides,” Proc. SPIE 9536, Advanced Microscopy Techniques IV and Neurophotonics II, 95360K (2015).
[15] U. Schnars and W. P. O. Juptner, Digital Holography, Springer US, New York, 5-69 (2005).
[16] W. Xu, M. H. Jericho, I. A. Meinertzhagen, and H. J. Kreuzer, “Digital in-line holography for biological applications,” Proc. Natl. Acad. Sci. U.S.A. 98, 11301–11305 (2001).
[17] I. Yamaguchi, J. Kato, S. Ohta, and J. Mizuno, “Image formation in phase-shifting digital holography and applications to microscopy,” Appl. Opt. 40, 6177-6186 (2001).
[18] G. Pedrini and H. J. Tiziani, “Short-coherence digital microscopy by use of a lensless holographic imaging system,” Appl. Opt. 41, 4489-4496 (2002).
[19] Y. C. Lin, M. L. Hsieh, H. Y. Tu, and C. J. Cheng, “Characterization of Liquid Crystal Spatial Light Modulators Using Digital Holographic Microscopy,” DH (2007).
[20] J. Goodman, Introduction to Fourier Optics, 3rd ed. (Roberts & Company, 2005).
[21] L. A. Williams, G. Nehmetallah, R. Aylo, and P. P. Banerjee, “Application of up-sampling and resolution scaling to Fresnel reconstruction of digital holograms,” Appl. Opt. 54, 1443-1452 (2015).
[22] A. W. Lohmann, R. G. Dorsch, D. Mendlovic, Z. Zalevsky, and C. Ferreira, “Space–bandwidth product of optical signals and systems,” J. Opt. Soc. Am. 13, 3, 470-473 (1996).
[23] L. Xu, X. Peng, Z. Guo, J. Miao, and A. Asundi, “Imaging analysis of digital holography,” Opt. Express. 13, 7, 2444-2452 (2005).
[24] D. Claus, D. Iliescu, and P. Bryanston-Cross, “Quantitative space-bandwidth product analysis in digital holography,” Appl. Opt. 50, 34, H116-H127 (2011).
[25] D. Claus and D. Iliescu, “Optical parameters and space–bandwidth product optimization in digital holographic microscopy,” Appl. Opt. 52, 1, A410-A422 (2013).