研究生: |
傅乙晏 Fu, Yi-Yan |
---|---|
論文名稱: |
中草藥M1抗肝癌之研究 Investigation of anti-hepatocellular carcinoma agent, Chinese herbal medicine M1 |
指導教授: |
林榮耀
Lin, Jung-Yaw |
學位類別: |
碩士 Master |
系所名稱: |
生命科學系 Department of Life Science |
論文出版年: | 2018 |
畢業學年度: | 106 |
語文別: | 英文 |
論文頁數: | 59 |
中文關鍵詞: | 肝細胞癌 、中草藥 、血管新生作用 、轉移作用 、表皮生長因子受體 、金屬基質蛋白酶 |
英文關鍵詞: | Hepatocellular carcinoma, Chinese herbal medicine, angiogenesis, metastasis, EGFR, MMPs |
DOI URL: | http://doi.org/10.6345/THE.NTNU.SLS.005.2018.D01 |
論文種類: | 學術論文 |
相關次數: | 點閱:284 下載:2 |
分享至: |
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
肝細胞癌(Hepatocellular carcinoma)是目前人類常見的惡性癌症之一,據統計肝癌致死率二十年來是台灣癌症主要死因。主要致癌因子包含了肝炎病毒感染和其他原因如酒精濫用、黃麴毒素的攝取等。
目前以中草藥治療疾病機轉的研究獲得重視,本研究中以Huh7肝癌細胞株來檢測中草藥對於肝癌細胞的血管新生作用及轉移作用是否能有效抑制。結果,由10種中藥發現M1中草藥能夠以低於細胞生存率(Cell Viability)濃度的一半濃度以下有效抑制Huh7的細胞遷移能力(Migration)。中草藥M1 針對細胞膜上的受器酪胺酸激酶 (Receptor Tyrosine Kinase,RTK)中的表皮生長因子受體(Epidermal Growth Factor Receptor,EGFR)有效抑制其磷酸化,並且抑制其下游分子AKT (Protein Kinase B,PKB)、mTOR (mammalian target of rapamycin)、HIF1-α(Hypoxia-inducible factor 1-alpha) 和VEGF-A(Vascular Endothelial Growth Factor A)的表現。EGFR下游路徑蛋白 Ras (Rat sarcoma) 、 ERK (extracellular signal–regulated kinases)、轉錄因子Snail亦有被抑制表現。細胞轉移機制中,可分解細胞外基質(Extracellular Matrix,ECM)蛋白的酵素,基質金屬蛋白酶(Matrix Metalloproteinases,MMPs)中的MMP-2、MMP-9在細胞外活性和表現量能夠被有效的抑制和減少。Epithelial–mesenchymal transition (EMT) 中的指標蛋白,如: E-cadherin和N-cadherin表現量也有改變,抑制細胞的遷移能力。本研究也藉由免疫缺陷小鼠(NOD/SCID)建立腫瘤模式,並以口服M1來觀察是否可在活體(in vivo)內抑制腫瘤生長,結果在腫瘤生長大小、重量、蛋白表現上都被有效抑制,M1確實可在活體中抑制腫瘤生長。總結研究結果可,中草藥M1有其發展抗癌藥物的潛力。
Hepatocellular Carcinoma (HCC) is one of higher malignant in cancers of human in the world. In addition, HCC mortality rate for 20 years is the leading cause of cancer death in Taiwan. The primary carcinogenic factors includes hepatitis virus infection and other are caused by alcohol abuse, and ingestion of carcinogen such as aflatoxin, etc. HCC has the characteristics of high level metastasis, angiogenesis, and recurrence after surgery.
In this study, we focused on how to effectively prevent metastasis and angiogenesis of HCC. Recently, it becomes important to use the Chinese Herbal Medicine (CHM) as a therapeutic strategy for the treatment of diseases. Here, we found that among 10 kinds of CHMs, M1 could inhibit the cell migration at the dose less than half concentration of IC50 (the half maximal inhibitory of concentration). M1 significantly inhibited the expression of Receptor Tyrosine Kinase, Epidermal Growth Factor Receptor (EGFR), and downstream, Ras, ERK, and Snail. Furthermore, another downstream pathway protein, Protein Kinase B (AKT), mammalian target of rapamycin (mTOR), Hypoxia-inducible factor 1-alpha (HIF1-α), and Vascular Endothelial Growth Factor A (VEGFA) were also inhibited. And the Matrix Metalloproteinases (MMPs), including MMP-2, MMP-9, which play an important role in metastasis mechanism, were also inhibited by M1. Epithelial–mesenchymal transition (EMT) markers, such as E-cadherin and N-cadherin, were effective altered by M1 treatment. In the xenograft mice model, we observed the tumors growth sizes, weight, and protein expressions were effectively inhibited by M1. In conclusions, we demonstrate that M1 has an inhibitory effect to suppress angiogenesis and metastasis of HCC in vitro and in vivo.
1 McGlynn, K. A., Petrick, J. L. & London, W. T. Global epidemiology of hepatocellular carcinoma: An emphasis on demographic and regional variability. Clinics in liver disease 19, 223-238,(2015).
2 Severi, T., van Malenstein, H., Verslype, C. & van Pelt, J. F. Tumor initiation and progression in hepatocellular carcinoma: Risk factors, classification, and therapeutic targets. Acta pharmacologica Sinica 31, 1409-1420,(2010).
3 Yang, P. C., Ho, C. M., Hu, R. H., Ho, M. C., Wu, Y. M. & Lee, P. H. Prophylactic liver transplantation for high-risk recurrent hepatocellular carcinoma. World journal of hepatology 8, 1309-1317,(2016).
4 Kamiza, A. B., Su, F. H., Wang, W. C., Sung, F. C., Chang, S. N. & Yeh, C. C. Chronic hepatitis infection is associated with extrahepatic cancer development: A nationwide population-based study in Taiwan. BMC cancer 16, 861,(2016).
5 Jayachandran, A., Dhungel, B. & Steel, J. C. Epithelial-to-mesenchymal plasticity of cancer stem cells: Therapeutic targets in hepatocellular carcinoma. Journal of hematology & oncology 9, 74,(2016).
6 Krelle, A. C., Okoli, A. S. & Mendz, G. L. Huh-7 human liver cancer cells: A model system to understand hepatocellular carcinoma and therapy. Journal of Cancer Therapy 04, 606-631,(2013).
7 Komposch, K. & Sibilia, M. EGFR signaling in liver diseases. International journal of molecular sciences 17,(2015).
8 Whittaker, S., Marais, R. & Zhu, A. X. The role of signaling pathways in the development and treatment of hepatocellular carcinoma. Oncogene 29, 4989-5005,(2010).
9 Marquardt, J. U., Andersen, J. B. & Thorgeirsson, S. S. Functional and genetic deconstruction of the cellular origin in liver cancer. Nature reviews. Cancer 15, 653-667,(2015).
10 Kozuki, T. Skin problems and EGFR-tyrosine kinase inhibitor. Japanese journal of clinical oncology 46, 291-298,(2016).
11 Shostak, K. & Chariot, A. EGFR and NF-kappaB: Partners in cancer. Trends in molecular medicine 21, 385-393,(2015).
12 Ferrara, N. & Adamis, A. P. Ten years of anti-vascular endothelial growth factor therapy. Nature reviews. Drug discovery 15, 385-403,(2016).
13 Weis, S. M. & Cheresh, D. A. Tumor angiogenesis: Molecular pathways and therapeutic targets. Nature medicine 17, 1359-1370,(2011).
14 Bueno, M. J., Mouron, S. & Quintela-Fandino, M. Personalising and targeting antiangiogenic resistance: A complex and multifactorial approach. British journal of cancer,(2017).
15 Spinelli, F. M., Vitale, D. L., Demarchi, G., Cristina, C. & Alaniz, L. The immunological effect of hyaluronan in tumor angiogenesis. Clinical & translational immunology 4,(2015).
16 Weis, S. M. & Cheresh, D. A. Pathophysiological consequences of VEGF-induced vascular permeability. Nature 437, 497-504,(2005).
17 Goel, H. L. & Mercurio, A. M. VEGF targets the tumour cell. Nature reviews. Cancer 13, 871-882,(2013).
18 Rafii, S., Butler, J. M. & Ding, B. S. Angiocrine functions of organ-specific endothelial cells. Nature 529, 316-325,(2016).
19 Albini, A., Tosetti, F., Li, V. W., Noonan, D. M. & Li, W. W. Cancer prevention by targeting angiogenesis. Nature reviews. Clinical oncology 9, 498-509,(2012).
20 Gacche, R. N. Compensatory angiogenesis and tumor refractoriness. Oncogenesis 4, 153,(2015).
21 Lindsey, S. & Langhans, S. A. Crosstalk of oncogenic signaling pathways during epithelial-mesenchymal transition. Frontiers in oncology 4, 358,(2014).
22 Slattum, G. M. & Rosenblatt, J. Tumour cell invasion: An emerging role for basal epithelial cell extrusion. Nature reviews. Cancer 14, 495-501,(2014).
23 Wan, L., Pantel, K. & Kang, Y. Tumor metastasis: Moving new biological insights into the clinic. Nature medicine 19, 1450-1464,(2013).
24 Marcucci, F., Stassi, G. & De Maria, R. Epithelial-mesenchymal transition: A new target in anticancer drug discovery. Nature reviews. Drug discovery 15, 311-325,(2016).
25 Lamouille, S., Xu, J. & Derynck, R. Molecular mechanisms of epithelial-mesenchymal transition. Nature reviews. Molecular cell biology 15, 178-196,(2014).
26 Iwatsuki, M., Mimori, K., Yokobori, T., Ishi, H., Beppu, T., Nakamori, S., Baba, H. & Mori, M. Epithelial-mesenchymal transition in cancer development and its clinical significance. Cancer Science 101, 293-299,(2010).
27 Hu, B., An, H. M., Wang, S. S., Chen, J. J. & Xu, L. Preventive and therapeutic effects of chinese herbal compounds against hepatocellular carcinoma. Molecules 21, 142,(2016).
28 Hu, Y., Wang, S., Wu, X., Zhang, J., Chen, R., Chen, M. & Wang, Y. Chinese herbal medicine-derived compounds for cancer therapy: A focus on hepatocellular carcinoma. Journal of ethnopharmacology 149, 601-612,(2013).
29 Huang, X. Y., Wang, L., Huang, Z. L., Zheng, Q., Li, Q. S. & Tang, Z. Y. Herbal extract "songyou yin" inhibits tumor growth and prolongs survival in nude mice bearing human hepatocellular carcinoma xenograft with high metastatic potential. Journal of cancer research and clinical oncology 135, 1245-1255,(2009).
30 Wang, N., Feng, Y., Lau, E. P., Tsang, C., Ching, Y., Man, K., Tong, Y., Nagamatsu, T., Su, W. & Tsao, S. F-actin reorganization and inactivation of rho signaling pathway involved in the inhibitory effect of coptidis rhizoma on hepatoma cell migration. Integrative cancer therapies 9, 354-364,(2010).
31 Staib, F., Hussain, S. P., Hofseth, L. J., Wang, X. W. & Harris, C. C. Tp53 and liver carcinogenesis. Human Mutation 21, 201-216,(2003).
32 Kaliski, A., Maggiorella, L., Cengel, K. A., Mathe, D., Rouffiac, V., Opolon, P., Lassau, N., Bourhis, J. & Deutsch, E. Angiogenesis and tumor growth inhibition by a matrix metalloproteinase inhibitor targeting radiation-induced invasion. Molecular cancer therapeutics 4, 1717-1728,(2005).
33 Zhang, Q. B., Zhang, B. H., Zhang, K. Z., Meng, X. T., Jia, Q. A., Zhang, Q. B., Bu, Y., Zhu, X. D., Ma, D. N., Ye, B. G., Zhang, N., Ren, Z. G., Sun, H. C. & Tang, Z. Y. Moderate swimming suppressed the growth and metastasis of the transplanted liver cancer in mice model: With reference to nervous system. Oncogene 35, 4122-4131,(2016).
34 Rodon, J., Dienstmann, R., Serra, V. & Tabernero, J. Development of PI3K inhibitors: Lessons learned from early clinical trials. Nature reviews. Clinical oncology 10, 143-153,(2013).
35 Altomare, D. A. & Testa, J. R. Perturbations of the AKT signaling pathway in human cancer. Oncogene 24, 7455-7464,(2005).
36 Vivanco, I. & Sawyers, C. L. The phosphatidylinositol 3-kinase AKT pathway in human cancer. Nature reviews. Cancer 2, 489-501,(2002).
37 Chiarini, F., Evangelisti, C., McCubrey, J. A. & Martelli, A. M. Current treatment strategies for inhibiting mtor in cancer. Trends in pharmacological sciences 36, 124-135,(2015).
38 Semenza, G. L. Targeting HIF-1 for cancer therapy. Nature reviews. Cancer 3, 721-732,(2003).
39 Wilson, W. R. & Hay, M. P. Targeting hypoxia in cancer therapy. Nature reviews. Cancer 11, 393-410,(2011).
40 Nie, D., Shan, X., Nie, L., Duan, Y., Chen, Z., Yang, Y., Li, Z., Tian, L., Gao, Q., Shan, Y. & Tang, N. Hepatitis C virus core protein interacts with Snail and histone deacetylases to promote the metastasis of hepatocellular carcinoma. Oncogene 35, 3626-3635,(2016).
41 Huan, H., Wen, X., Chen, X., Wu, L., Liu, W., Habib, N. A., Bie, P. & Xia, F. C/ebpalpha short-activating RNA suppresses metastasis of hepatocellular carcinoma through inhibiting EGFR/beta-catenin signaling mediated EMT. PloS one 11, e0153117,(2016).
42 Lavoie, H. & Therrien, M. Regulation of raf protein kinases in ERK signalling. Nature reviews. Molecular cell biology 16, 281-298,(2015).
43 Bauvois, B. Transmembrane proteases in cell growth and invasion: New contributors to angiogenesis? Oncogene 23, 317-329,(2004).
44 Larue, L. & Bellacosa, A. Epithelial-mesenchymal transition in development and cancer: Role of phosphatidylinositol 3' kinase/AKT pathways. Oncogene 24, 7443-7454,(2005).
45 Su, X., Yao, Z., Li, S. & Sun, H. Synergism of chinese herbal medicine: Illustrated by danshen compound. Evidence-based complementary and alternative medicine : eCAM 2016, 7279361,(2016).
46 Ye, F., Che, Y., McMillen, E., Gorski, J., Brodman, D., Saw, D., Jiang, B. & Zhang, D. Y. The effect of scutellaria baicalensis on the signaling network in hepatocellular carcinoma cells. Nutrition and cancer 61, 530-537,(2009).
47 Hu, B., An, H. M., Shen, K. P., Song, H. Y. & Deng, S. Polygonum cuspidatum extract induces anoikis in hepatocarcinoma cells associated with generation of reactive oxygen species and downregulation of focal adhesion kinase. Evidence-based complementary and alternative medicine : 2012, 607675,(2012).
48 Floor, S., van Staveren, W. C., Larsimont, D., Dumont, J. E. & Maenhaut, C. Cancer cells in epithelial-to-mesenchymal transition and tumor-propagating-cancer stem cells: Distinct, overlapping or same populations. Oncogene 30, 4609-4621,(2011).
49 Bauvois, B. New facets of matrix metalloproteinases MMP-2 and MMP-9 as cell surface transducers: Outside-in signaling and relationship to tumor progression. Biochimica et biophysica acta 1825, 29-36,(2012).
50 Ribatti, D., Nico, B. & Vacca, A. Importance of the bone marrow microenvironment in inducing the angiogenic response in multiple myeloma. Oncogene 25, 4257-4266,(2006).