簡易檢索 / 詳目顯示

研究生: 施芳宜
Shih, Fang-yi
論文名稱: 探討不同訓練負荷指標對於排球選手運動傷害之研究
Investigating the Impact of Various Training Load Indicators on Sports Injuries in Volleyball Players
指導教授: 相子元
Shiang, Tzyy-Yuang
口試委員: 相子元
Shiang, Tzyy-Yuang
許維君
Hsu, Wei-Chun
張恩崇
Chang, En-Chung
口試日期: 2024/05/23
學位類別: 碩士
Master
系所名稱: 運動競技學系
Department of Athletic Performance
論文出版年: 2024
畢業學年度: 112
語文別: 中文
論文頁數: 58
中文關鍵詞: 女子排球短期與長期訓練負荷比局部定位系統
英文關鍵詞: women's volleyball, ACWR, Local Positioning System
研究方法: 實驗設計法
DOI URL: http://doi.org/10.6345/NTNU202400929
論文種類: 學術論文
相關次數: 點閱:55下載:5
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 前言:近年來許多的研究將監控訓練負荷量做為減少球員運動傷害的方法,因為過度的訓練可能會影響球員的運動表現,甚至產生運動傷害,而排球是項跳躍十分頻繁的非接觸性運動,女性排球員比男性有更高的前十字韌帶 (ACL) 傷害風險。而監控短期與長期訓練負荷比 (ACWR) 可以了解球員當前的訓練負荷(短期) 以及球員已儲備的訓練負荷 (長期)。ACWR 有兩種算法:(1) 滾動平均值 (RA) 和 (2) 指數加權移動平均值 (EWMA),以利教練團能監控量化球員體能狀態及了解選手隨後運動傷害風險。目的:使用LPS結合IMU 測量 Player load、移動距離和跳躍次數作為外在活動量的監控參數,並透過 RA 與 EWMA兩種 ACWR算法監控大專女子排球選手的訓練負荷量比值,比較兩種算法與實際發生運動傷害之間的關聯,方法:實驗對象為15名大專院校甲級女子排球隊公開一級選手,選手常規熱身結束後,使用已同步LPS與IMU 放置於運動背心左側肩膀暗袋處,蒐集Player load、移動距離和跳躍次數等數據。結果:RA 與 EWMA 兩種算法為中度正相關 (r =0.400, p <.001),RA 算法最高值皆出現在第五週,隨後幾週都有較大幅度的下降,而 EWMA 則第五週多為次高比值,最高值出現在第六週,隨後幾週則呈現逐步的下降,而在第七週選手 L2 產生非接觸急性傷害。結論:EWMA 比值較 RA 更貼切實際產生傷害時間段,可以了解選手當下體能狀況及隨後產生傷害的風險,但不是預測傷害的工具。

    Foreword: In recent years, many studies have used monitoring of training load as a method to reduce players' sports injuries, because excessive training may affect players' sports performance and even cause sports injuries, and volleyball is a non-contact sport with very frequent jumping. , female volleyball players have a higher risk of anterior cruciate ligament (ACL) injury than males. Monitoring short-term and long-term training load ratio (ACWR) can understand the player's current training load (short-term) and the training load the player has reserved (long-term). ACWR has two algorithms: (1) rolling average (RA) and (2) exponentially weighted moving average (EWMA) to facilitate the coaching staff to monitor and quantify players' physical status and understand the player's subsequent sports injury risk. Purpose: Use LPS combined with IMU to measure player load, moving distance and number of jumps as monitoring parameters for external activity, and monitor the training load ratio of college female volleyball players through two ACWR algorithms, RA and EWMA, and compare the two algorithms with The correlation between actual sports injuries. Method: The experimental subjects were 15 open first-level players of the Class A women's volleyball team of colleges and universities. After the players' regular warm-up, synchronized LPS and IMU were used and placed in the left shoulder pocket of the sports vest collecting data such as Player load, moving distance, and number of jumps. Results: The RA and EWMA algorithms have a moderate positive correlation (r = 0.400, p <.001). The highest values of the RA algorithm appeared in the fifth week, and then declined significantly in the following weeks, while the EWMA algorithm The ratio was the second highest for more than five weeks, with the highest value appearing in the sixth week, and then gradually declining in the following weeks. In the seventh week, player L2 suffered a non-contact acute injury. Conclusion: The EWMA ratio is more relevant to the actual time period of injury than RA. It can understand the player's current physical condition and subsequent risk of injury, but it is not a tool to predict injuries.

    第壹章 緒論 1 第一節 前言 1 第二節 研究背景 2 第三節 研究目的 4 第四節 研究假設 4 第五節 研究範圍與限制 4 第六節 名詞操作定義 5 第七節 研究之重要性 7 第貳章 文獻探討 7 第一節 運動員追蹤系統 7 第二節 LPS結合慣性感測器 12 第三節 短期與長期訓練負荷比 13 第四節 文獻小結 14 第參章 研究方法 15 第一節 研究對象 15 第二節 使用儀器與設備 15 第三節 實驗流程 19 第四節 資料分析 21 第五節 統計方法 22 第肆章 結果 23 第一節 選手訓練負荷量原始數據 23 第二節 各訓練負荷指標之 RA/EWMA ACWR 比值參數 25 第三節 不同專項位置訓練負荷指標參數 32 第四節 RA/EWMA ACWR 之相關分析 39 第五節 選手實際運動傷害情形及個案分析 39 第伍章 討論 44 第一節 兩種 ACWR 算法 (RA/EWMA) 對於訓練負荷量的監控比較 44 第二節 兩種 ACWR 算法 (RA/EWMA) 對於實際產生運動傷害的探討 48 第六章 結論與建議 49 參考文獻 50 附錄一 受試者實驗須知 56 附錄二 受試者同意書 57 附錄三 受試者基本資料表 58

    黃冠勛、林昀昀、張恩崇、相子元 (2018)。穿戴式科技應用於大專甲組女子排球選手比賽與訓練之監控。華人運動生物力學期刊,15(1),30-36。
    謝耀毅、陳柏潔、黃長福 (2015)。不同性別排球選手扣球著地下肢生物力學之差異。中華民國體育學報,48(2),195-204。
    Alarifi, A., Al-Salman, A., Alsaleh, M., Alnafessah, A., Al-Hadhrami, S., Al-Ammar, M.A., & Al-Khalifa,H.S. (2016). Ultra wideband indoor positioning technologies: Analysis and recent advances. Sensors, 16(5), 707.
    Andrade, D. M., Fernandes, G., Miranda, R., Coimbra, D. R., & Bara Filho, M. G. (2018). Training load and recovery in volleyball during a competitive season. J Strength Cond Res, 1, 1-7.
    Andrade Nogueira, F. C. d., Nogueira, R. A., Coimbra, D. R., Miloski, B., Freitas, V. H. d., & Bara Filho, M. (2014). Internal training load: perception of volleyball coaches and athletes. Revista Brasileira de Cineantropometria & Desempenho Humano, 16(6), 638-647.
    Aoki, M. S., Arruda, A. F., Freitas, C. G., Miloski, B., Marcelino, P. R., Drago, G., Drago, M., Moreira, A. (2017). Monitoring training loads, mood states, and jump performance over two periodized training mesocycles in elite young volleyball players. International Journal of Sports Science & Coaching, 12(1), 130-137.
    Bastida-Castillo, A., Gómez-Carmona, C. D., la Cruz-Sánchez, D., Reche-Royo, X., Ibáñez, S. J., & Pino Ortega, J. (2019). Accuracy and inter-unit reliability of ultra-wide-band tracking system in indoor exercise. Applied Sciences, 9(5), 939.
    Camomilla, V., Bergamini, E., Fantozzi, S., & Vannozzi, G. (2018). Trends supporting the in-field use of wearable inertial sensors for sport performance evaluation: A systematic review. Sensors, 18(3), 873.
    Charlton, P. C., Kenneally-Dabrowski, C., Sheppard, J., & Spratford, W. (2017). A simple method for quantifying jump loads in volleyball athletes. Journal of Science and Medicine in Sport, 20(3), 241-245.
    Crabolu, M., Pani, D., Raffo, L., Conti, M., & Cereatti, A. (2018). Functional estimation of bony segment lengths using magneto-inertial sensing: Application to the humerus. PLoS one, 13(9), e0203861.
    Curtis, R., Benjamin, C., Huggins, R., & Casa, D. J. (2019). Elite Soccer Players: Maximizing Performance and Safety. Routledge.
    Esmaeili, A., Hopkins, W.G., Stewart, A.M., Elias, G.P., Lazarus, B.H., & Aughey, R.J. (2018). The individual and combined effects of multiple factors on the risk of soft tissue non-contact injuries in elite team sport athletes. Front Physiol,9,1280.
    Ferretti, A., Papandrea, P., Conteduca, F., & Mariani, P. P. (1992). Knee ligament injuries in volleyball players. The American Journal of Sports Medicine, 20(2), 203-207.
    Folgado, H., Gonçalves, B., & Sampaio, J. (2018). Positional synchronization affects physical and physiological responses to preseason in professional football (soccer). Research in Sports Medicine, 26(1), 51-63.
    Ford, K. R., Myer, G. D., & Hewett, T. E. (2003).Valgus knee motion during landing in high school female and male basketball players. Medicine and Science in Sports and Exercise,35, 1745-1750.
    Frencken, W., Van Der Plaats, J., Visscher, C., & Lemmink, K. (2013). Size matters: Pitch dimensions constrain interactive team behaviour in soccer. Journal of Systems Science and Complexity, 26(1), 85-93.
    Fusca, M., Negrini, F., Perego, P., Magoni, L., Molteni, F., & Andreoni, G. (2018). Validation of a wearable imu system for gait analysis: Protocol and application to a new system. Applied Sciences, 8(7), 1167.
    Gabbett, T. J. (2015). Relationship between accelerometer load, collisions, and repeated high-intensity effort activity in rugby league players. The Journal of Strength & Conditioning Research, 29(12), 3424-3431.
    Gabbett, T. J. (2016). The training—injury prevention paradox : should athletes be training smarter and harder? Br J Sports Med. 50,273–280.
    Gageler, H. W., Wearing, S., & James, A. D. (2015). Automatic jump detection method for athlete monitoring and performance in volleyball. International Journal of Performance Analysis in Sport, 15(1), 284-296.
    García-de-Alcaraz, A.,Ramírez-Campillo, R., Rivera-Rodríguez, M., & Romero-Moraleda, B. (2020). Analysis of jump load during a volleyball season in terms of player role. Journal of Science and Medicine in Sport, 23(10), 973-978.
    Griffin, A., Kenny, I. C., Comyns, T. M., Lyons, M. (2020). The Association Between the Acute:Chronic Workload Ratio and Injury and its Application in Team Sports: A Systematic Review. Sports Medicine 50,561–580
    Hasan, H. S., Hussein, M., Saad, S. M., & Dzahir, M. A. M. (2018). An Overview of Local Positioning System: Technologies, Techniques and Applications. International Journal of Engineering & Technology, 7(3.25), 1-5.
    Hoppe, M. W., Baumgart, C., Polglaze, T., & Freiwald, J. (2018). Validity and reliability of GPS and LPS for measuring distances covered and sprint mechanical properties in team sports. PLoS one, 13(2), e0192708.
    Hughes, G., Watkins, J., & Owen, N. (2008). Gender differences in lower limb frontal plane kinematics. Sport Biomechanics. 7(3), 333-341.
    Hughes, G., Watkins, J., & Owen, N. (2010). Differences between the sexes in knee kinetics during landing from volleyball block jumps. European Journal of Sport Science, 10(1), 1-11.
    Hulin, B. T., Gabbett, T. J., Blanch, P., Chapman, P., Bailey, D., & Orchard, J. W. (2014). Spikes in acute workload are associated with increasedinjury risk in elite cricket fast bowlers. Br J Sports Med.48(8),708–12.
    Jackson, B. M., Polglaze, T., Dawson, B., King, T., & Peeling, P. (2018). Comparing Global Positioning System and Global Navigation Satellite System Measures of Team-Sport Movements. International Journal of Sports Physiology and Performance, 13(8), 1005-1010.
    Johansson, R. E., Adolph, S. T., Swart, J., & Lambert, M. I. (2020). Accuracy of GPS sport watches in measuring distance in an ultramarathon running race. International Journal of Sports Science & Coaching, 15(2), 212-219.
    Kernozek, T. W., Torry, M. R., Hoof, H. V., Cowley, H., & Tanner, S. (2005). Gender differences in frontal plane and sagittal plane biomechanics during drop landings. Medicine and Science in Sports and Exercise,37(6), 1003-1012.
    Larsson, P. (2003). Global positioning system and sport-specific testing. Sports Medicine, 33(15), 1093-1101.
    Libs, H., Boos, B., Shipley, F., Peacock, C. A., & Sanders, G. J. (2019). Variability in preseason jump loads and heart rate intensities in division i volleyball. Journal of Exercise and Nutrition ISSN, 2640, 2572.
    Lima, R. F., Silva, A., Afonso, J., Castro, H., & Clemente, F. M. (2020). External and internal Load and their Effects on Professional Volleyball Training. International Journal of Sports Medicine, 41(07), 468-474.
    Mannay, K., Benhadjyoussef, N., Machhout, M., & Ureña, J. (2016). Location and positioning systems: Performance and comparison. Paper presented at the 2016 4th International Conference on Control Engineering & Information Technology (CEIT).
    Mei, C., Gao, F., & Li, Y. (2019). A determination method for gait event based on acceleration sensors. Sensors, 19(24), 5499.
    Menaspà, P. (2019). Are rolling averages a good way to assess training load for injury prevention? Br J Sports Med, 51(7),618–9.
    Murray, N. B, Gabbett, T. J, Townshend, A. D, & Blanch, P. (2017). Calculating acute:chronic workload ratios using exponentially weighted moving averages provides a more sensitive indicator of injury likelihood than rolling averages. Br J Sports Med, 51(9),749–54.
    Sampaio, J., & Maçãs, V. (2012). Measuring tactical behaviour in football. International Journal of Sports Medicine, 33(05), 395-401.
    Santos, S., Coutinho, D., Gonçalves, B., Schöllhorn, W., Sampaio, J., & Leite, N. (2018). Differential learning as a key training approach to improve creative and tactical behavior in soccer. Research Quarterly for Exercise and Sport, 89(1), 11-24.
    Schelling, X., & Torres, L. (2016). Accelerometer load profiles for basketball-specific drills in elite players. Journal of Sports Science & Medicine, 15(4), 585.
    Scott, B. R., Lockie, R. G., Knight, T. J., Clark, A. C., & de Jonge, X. A. J. (2013). A comparison of methods to quantify the in-season training load of professional soccer players. International Journal of Sports Physiology and Performance, 8(2), 195-202.
    Sheppard, J. M., Nolan, E., & Newton, R. U. (2012). Changes in strength and power qualities over two years in volleyball players transitioning from junior to senior national team. The Journal of Strength & Conditioning Research, 26(1), 152-157.
    Skazalski, C., Whiteley, R., Hansen, C., Bahr, R. (2018). A valid and reliable method to measure jump-specific training and competition load in elite volleyball players. Scand J Med Sci Sports, 28,1578–15.
    Storm, F. A., Buckley, C. J., & Mazzà, C. (2016). Gait event detection in laboratory and real life settings: Accuracy of ankle and waist sensor based methods. Gait & Posture, 50, 42-46.
    Teufl, W., Lorenz, M., Miezal, M., Taetz, B., Fröhlich, M., & Bleser, G. (2019). Towards inertial sensor based mobile gait analysis: Event-detection and spatio-temporal parameters. Sensors, 19(1), 38.
    Varley, M. C., Fairweather, I. H., & Aughey1, Robert J. (2012). Validity and reliability of GPS for measuring instantaneous velocity during acceleration, deceleration, and constant motion. Journal of Sports Sciences, 30(2), 121-127.
    Vähä‐Ypyä, H., Vasankari, T., Husu, P., Suni, J., & Sievänen, H. (2015). A universal, accurate intensity‐based classification of different physical activities using raw data of accelerometer. Clinical Physiology and Functional Imaging, 35(1), 64-70.
    Vlantes, T. G., & Readdy, T. (2017). Using microsensor technology to quantify match demands in collegiate Women's volleyball. The Journal of Strength & Conditioning Research, 31(12), 3266-3278.
    Williams, S., West, S., Cross, M. J., & Stokes, K. A. (2017). Better way to determine the acute:chronic workload ratio? Br J Sports Med, 51(3), 209–10.
    Witte, T., & Wilson, A. (2004). Accuracy of non-differential GPS for the determination of speed over ground. Journal of Biomechanics, 37(12), 1891-1898.

    下載圖示
    QR CODE