簡易檢索 / 詳目顯示

研究生: 譚一泓
Yi-Hung Carol Tan
論文名稱: 新穎抗癌藥物及其所影響之蛋白對於肺癌治療的效性探討
Interplay between anticancer drugs and their effector proteins on therapeutics of lung cancer
指導教授: 王憶卿
Wang, Yi-Ching
謝秀梅
Hsieh, HsiuMei
學位類別: 博士
Doctor
系所名稱: 生命科學系
Department of Life Science
論文出版年: 2010
畢業學年度: 98
語文別: 英文
論文頁數: 117
中文關鍵詞: 新穎抗癌藥物肺癌腫瘤轉移突變
英文關鍵詞: anti-cancer drugs, OSU03013, PHA665752, c-Cbl, c-Met, mutation, migration, metastasis
論文種類: 學術論文
相關次數: 點閱:230下載:2
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 目的:標靶治療是目前癌症治療的主要研究方向,大多數的肺癌患者對於化學療法或是放射線療法都有強烈的抗藥性,因此新穎的抗癌藥物以及新的治療目標是極需被開發研究的。在此論文的第一部分研究目的,希望鑑定新穎的小分子化合物OSU03013,是否可以作為肺癌新穎抗癌藥物。OSU03013其為舊藥celecoxib的衍生物,屬於cyclooxygenase (COX)-2的抑制劑。在攝護腺癌研究中證實OSU03013透過3-phosphoinositide- dependent kinase 1 (PDK1)/AKT訊息傳導路徑抑制腫瘤生長,此外,OSU03013也使用在乳癌的研究中。因此我們也希望能定義出OSU03013在肺癌中的目標蛋白及影響的生物路徑。此論文的第二部份是探討新穎c-Met抑制劑PHA665752對肺癌細胞生長及轉移的抑制作用,以及新穎治療目標基因Cbl (Casitas B-lineage lymphoma) 於肺癌病人檢體之突變情形。c-Cbl基因位於人類染色體11q23.3的位置,c-CBL蛋白目前已被發現主要參與細胞訊息傳導路徑以及酪氨酸激酶接受器(如:c-Met 和EGFR)的負調控角色,因此,本研究推測c-Cbl的突變或許是造成c-Met和EGFR過度表現的原因之一。此外,結合PHA665752 以及c-CBL 正常蛋白的共同抑制作用,或許可以成為新穎治療肺癌的策略。
    實驗方法與設計:論文的第一部分,為了探討OSU03013是否有潛力成為新穎抗癌藥物,本研究利用肺癌細胞之毒殺作用及其細胞學鑑定,之後利用二維電泳、質譜分析等蛋白質體學的方法找尋藥物的目標及影響蛋白,並分析這些蛋白/訊息傳遞路徑與細胞生長調控的關係。論文的第二部分,利用肺癌細胞之毒殺作用來探討PHA665752的抑制效果,並利用基因定序及生物功能探討的方式,在總共一百一十九位來自台灣、美國白種人及黑人肺癌病人腫瘤組織中來研究c-Cbl的基因突變圖譜,並且在非小細胞肺癌細胞株中探討c-Cbl基因突變後影響細胞生長的狀況。此外,並利用c-Met抑制劑PHA665752及c-Cbl 正常基因轉染的共同處理,在細胞及動物實驗中來探討c-Met抑制劑及c-CBL正常蛋白對癌細胞的抑制作用。
    結果:第一部分的結果指出OSU03013具有高度細胞選擇性毒殺作用,而此藥物對於肺正常細胞在相同濃度處理並沒有毒殺作用,所以是一個治療肺癌的潛力藥物。在細胞學鑑定實驗中,我們發現OSU03013的細胞致死劑量在48小時的測試下約1~4 M,會造成細胞週期停滯在間期一 (Gap 1, G1 arrest) 的現象;OSU03013在肺癌細胞同時也藉由內質網壓力效應去引發細胞凋亡 (apoptosis)。在蛋白質體學的實驗中,我們發現此藥物在肺癌細胞之目標蛋白包含了cAMP-dependent protein kinase inhibitor β form (PKIB, 激酶抑制蛋白)、數種G proteins (G蛋白)、數種Heat-shock proteins (熱休克蛋白)、Antioxidant enzymes (抗氧化蛋白)、及其他調控細胞生長、代謝的蛋白;這些蛋白有許多皆以Western blot (西方點墨法) 確認。經由分子模擬的實驗顯示,OSU03013會與ATP競爭然後與cAMP-dependent protein kinase (PKA)結合,並且抑制PKA的訊息傳導路徑,推測因此抑制了肺癌細胞生長。第二部份的結果指出,c-Met普遍過度表現於肺癌細胞中,而PHA665752對癌細胞具有毒殺作用、降低c-Met的表現,並且會引發早期細胞凋亡的機制。此外,一百一十九個肺癌病人樣本中,有一個已知的基因多型性變異 (signal nucleotide polymorphism) L620F以及八個位於表現子(exon)的c-Cbl突變型,其突變機率為百分之六點七。在三十七個台灣肺癌病人樣本中,有百分之二十一點六失去異合性(Loss of heterozygosity)的情形發生;另一方面,S80N/H94Y、Q249E、W802stop突變分別專一性發現於美國白種人、台灣人、非裔美人。在A549細胞中轉染此三種突變型c-CBL蛋白會導致細胞生長率以及移動能力的增加。最後,無論是在細胞或動物實驗中,將PHA665752以及c-CBL正常蛋白單獨或共同處理癌細胞有抑制其生長的現象,亦有抑制細胞轉移的情形。
    結論:本研究為首篇在肺癌細胞中偵測OSU03013藥物之抑制癌細胞潛力,並由分子及蛋白質體學的研究結果發現此藥物會經由抑制PKA訊息傳導路徑來抑制癌細胞生長,並導致GSK3的去磷酸化,進而使在肺癌細胞中通常過度表現的-catenin被分解。此外,基於c-CBL可以負調控酪氨酸激酶接受器的表現,加上PHA665752亦可抑制c-Met在細胞中的過度表現,或許將來可以發展c-Cbl之基因治療,並且配合PHA665752的共同治療成為新的癌症治療方向。

    Purpose: Non-small cell lung cancer (NSCLC) is a difficult disease to treat. Targeted cancer therapies are now the main issue for cancer treatment. Most lung cancer patients have strong drug resistence whether on radiation therapy or chemotherapy. Thus, novel anti-cancer drugs or therapeutic target identification are urgently needed. In part I, a novel small molecular, OSU03013, was used for investigating whether it can be a novel anti-cancer drug for lung cancer treatment. OSU03013 is a derivative of celecoxib, which is a known cyclooxygenase (COX)-2 inhibitor, has been proved that OSU03013 can inhibit prostate cancer cells growth through the 3-phosphoinositide-dependent kinase 1 (PDK1)/AKT signaling pathway. In addition, OSU03013 has been used in breast cancer treatment. Thus, the present study identified OSU03013 with better target selectivity in lung cancer. In party II, a new potential c-Met inhibitor PHA665752 was used for anti-tumor growth and migration in vitro and in vivo. In addition, mutation spectrum of new therapeutic target Cbl (Casitas B-lineage lymphoma) in lung cancer patients was investigated. Cbl located in chromosome 11q23 and one of the Cbl family proteins, c-CBL, has been recognized as a key player in the negative regulation of signaling pathways such as receptor tyrosine kinases (RTKs) c-Met and EGFR proteins. Thus, we hypothesized that c-Cbl mutations may contribute to the oncogenic potential of c-Met and EGFR. Moreover, combined treatment with PHA665752 and c-CBL wild type (WT) protein might provide a new therapeutic strategy.
    Experimental Design: In part I, to investigate whether OSU03013 can be a potential drug for lung cancer treatment, the present study investigated its cytotoxicity mechanisms by flow cytometry and phosphatidylserine (PS) staining in A549, CL1-1, and H1435 lung cancer cell lines. In addition, this study identified the affected proteins by proteomics and confirmed the selected proteins by Western blot. The interaction between OSU03013 and potential target protein was tested by molecular modeling. In part II, the inhibitive ability of PHA665752 was examined by cytotoxicity measurement. In addition, c-Cbl mutation spectrum in tumor and corresponding normal tissues from total 119 of Taiwanese, Caucasian and African American lung cancer patients was examined by polymerase chain reaction and direct sequencing. Biological function of identified c-Cbl mutations was analyzed in cell models. Moreover, combined treatment and transfection of PHA665752 and c-Cbl WT were tested for anti-tumor cells growth and migration in vitro and in vivo.
    Results: The results in part I indicated that OSU03013 showed highly cell selective cytotoxicity and the IC50 was at 1~4 M in all lung cancer cell lines tested at 48 h post-treatment. OSU03013 caused cell cycle G1 phase arrest and the cells treated with OSU03013 showed PS early apoptosis via endoplasmic reticulum (ER) stress. Several proteins such as heat shock protein 27, 70, and 90, cell division cycle 2 (CDC2), -tubulin, Annexin A3, cAMP-dependent protein kinase (PKA), glycogen synthase kinase 3-beta (GSK3and -catenin were identified by proteomics and confirmed by Western blot. In addition, molecular modeling suggested that OSU03013 competes with ATP to bind to PKA. In part II, c-Met showed overexpression in lung cancer cells. The inhibitor of c-Met, PHA665752 inihibited lung cancer cells proliferation, reduced the expression of c-Met, and induced early cell apoptosis. A known single nucleotide polymorphism L620F and eight c-Cbl mutations were identified in lung cancer samples of Taiwanese, Caucasian, and African American with the mutation rate of 6.7% (8/119). In addition, 21.6% (8/37) loss of heterozygosity was found in Taiwanese lung cancer patients. The mutation S80N/H94Y, Q249E, and W802stop were specifically identified from Caucasian, Taiwanese and African American, respectively. Ectopic expression of these c-CBL mutants showed increased cell viability and migration ability in A549 lung cancer cell line. Furthermore, PHA665752 treatment and c-Cbl WT ectopical expression alone or in combination reduced tumor cell growth and migration in both cell and animal models.
    Conclusions: The present study identirfied for the first time that OSU03013 inhibits PKA activity and causes dephosphorylation of GSK3 leading to -catenin degradation, which is often overexpressed in lung cancer. The molecular and proteomic results show the potential of OSU03013 as an anti cancer drug for lung cancer. Also, the results of c-Cbl study provide new evidence that c-Cbl mutations play a role in lung tumorigenesis. In addition, combined treatment of PHA665752 compound and c-CBL WT protein expression would be the new therapeutic strategy for lung cancer.

    Chinese Abstract------------------------------------- 1 English Abstract------------------------------------- 4 Staudy Basis----------------------------------------- 7 Specific Aims---------------------------------------- 9 Part I. Molecular Mechanisms of Cytotoxicity and Proteomics Approach for Potential Anti- Cancer Drug Osu03013 in Lung Cancer: involvement of ER response and the PKA/-catenin pathway----------------------- 12 Introduction----------------------------------------- 13 1. Target therapy in cancer--------------------- 13 2. Small molecular: Potential ant-cancer drug-OSU03013-------------------------------- 13 3. Proteomic studies: Genome wild target proteins approach---------------------------- 14 4. The apoptosis mechanisms--------------------- 15 4.1. Caspases (cycteine-dependent aspartate specific proteases)-------------------------- 16 4.2. Pathways of apoptosis------------------------ 16 4.2.1. Extrinsic pathway - The death receptor mediated caspase activation pathway---------- 17 4.2.2. Intrinsic pathway - The cytochrome c initiated caspase activation pathway--------- 17 4.2.3. Endoplasmic reticulum (ER) Pathway----------- 18 Materials and Methods-------------------------------- 20 1. Cell culture--------------------------------- 20 2. Cytotoxicity measurement--------------------- 20 3. Flow cytometry------------------------------- 20 4. Early apoptosis detection/ Phosphatidylserine (PS) staining------------- 21 5. AKT activity assay -------------------------- 21 6. Two-dimensional gel electrophoresis and image analysis and in-gel digestion and MALDI-TOF-MS and MALDI-TOF-MS/MS------------- 22 7. Western blot--------------------------------- 23 8. Molecular modeling--------------------------- 24 Results---------------------------------------------- 26 1. Cytotoxicity of OSU03013 to lung cancer cell lines A549, CL1-1, and H1435, and to normal lung cell line MRC5---------------- 26 2. OSU03013 induced endoplasmic reticulum (ER) stress in lung cancer cell lines A549, CL1-1, and H1435----------------------------- 26 3. OSU03013 induces G1 arrest and early apoptosis------------------------------------ 27 4. Affected proteins of treatment with OSU03013 identified by 2-dimension electrophoresis/ MALDI-Q-TOF---------------------------------- 27 5. Molecular modeling of OSU03013 to the cAMP- dependent protein kinase (PKA) and the activity assay by Western blot of its down stream proteins------------------------------ 28 Discussion------------------------------------------- 29 References------------------------------------------- 34 Part II. c-Met inhibitor PHA665752 and c-Cbl Ubiquitination as lung cancer therapeutic targets in cell and animal models----------- 40 Introduction----------------------------------------- 41 1. Tyrosine Kinase receptors (RTKs)------------- 41 1.1. Hepatocyte growth factor receptor (HGFR/c-Met)--------------------------------- 42 1.2. Epidermal growth factor receptor (EGFR)------ 42 2 RTKs as a arget of cancer therapy------------ 43 2.1 Monoclonal antibody-------------------------- 43 2.2 Tyrosine kinase inhibitors------------------- 44 2.3 Small molecular: Potential anti-cancer drug-PHA665752------------------------------- 45 3. Ubiquitination------------------------------- 45 3.1. CBL family proteins and structures----------- 46 3.2. c-CBL protein downregulates protein tyrosine kinases----------------------------- 47 3.3. Loss of function of CBL protein in human cancer--------------------------------------- 48 Materials and Methods-------------------------------- 49 1. Tissue samples------------------------------- 49 2. Cell culture--------------------------------- 49 3. Cell proliferation rate measurement---------- 50 4. c-Cbl gene mutational analysis--------------- 50 5. Plasmid constructs and site-directed mutagenesis---------------------------------- 50 6. Loss of heterozygosity (LOH) analysis-------- 51 7. Transfection of c-Cbl constructs------------- 52 8. c-Cbl knockdown------------------------------ 52 9. Early apoptosis detection/ Phosphatidylersine (PS) staining------------- 53 10. Wound healing assay-------------------------- 53 11. Transwell assay------------------------------ 54 12. Western blot--------------------------------- 54 13. Flow cytometry------------------------------- 55 14. Ubiquitin ligase activity-------------------- 55 15. Tumor growth and metastasis analyses in vivo-------------------------------------- 56 16. Tissue Western blot-------------------------- 56 17. Statistical analysis------------------------- 57 Results---------------------------------------------- 58 1. c-Cbl gene mutations in lung cancer---------- 58 2. c-Cbl mutations in different ethnic groups--- 59 3. Mutations in c-Met and EGFR can be co-associated with c-Cbl alterations in Taiwanese lung cancer patients--------------- 59 4. Cellular functions of c-Cbl alterations in the context of lung tumorigenesis--------- 60 4.1. E3 activity is intact in the mutant c-CBL proteins------------------------------------- 60 4.2. Effect on lung cancer cell viability--------- 60 4.3. Effect on cell cycle------------------------- 61 4.4. Effect on cell motility---------------------- 62 4.5. c-Cbl knockdown increases cell viability----- 62 5. c-Cbl wild type transfection alone and combined with PHA665752 treatment------------ 63 5.1. In hibition of cell proliferation and phosphor-c-Met expression of PHA665752 to lung cancer cell lines A549 and H226br --- 63 5.2. c-Cbl WT transfection enhances PHA665752 cytotoxicity potential ---------------------- 63 5.3. PHA665752 treatment but not c-CBL WT ectopic expression induces early apoptosis--- 64 5.4. Effect on cell motility---------------------- 64 5.5. c-Cbl WT transfection alone and combined PHA665752 treatment effectively inhibites cell growth in vivo-------------------------- 65 5.6. c-Cbl WT transfection and combined PHA665752 treatment effectively inhibites metastasis in vivo--------------------------- 66 Discussion------------------------------------------- 67 References------------------------------------------- 72 Tables----------------------------------------------- 80 Figures---------------------------------------------- 89 Appendix--------------------------------------------- 117

    Aebersold R, Mann M (2003). Mass spectrometry-based proteomics. Nature 422: 198-207.

    Amit I, Wides R, Yarden Y (2007). Evolvable signaling networks of receptor tyrosine kinases: relevance of robustness to malignancy and to cancer therapy. Mol Syst Biol 3: 151.

    Ashkenazi A, Dixit VM (1998). Death receptors: signaling and modulation. Science 281: 1305-8.

    Bao Q, Shi Y (2007). Apoptosome: a platform for the activation of initiator caspases. Cell Death Differ 14: 56-65.

    Boyce M, Bryant KF, Jousse C, Long K, Harding HP, Scheuner D, Kaufman RJ, Ma D, Coen DM, Ron D, Yuan J (2005). A selective inhibitor of eIF2alpha dephosphorylation protects cells from ER stress. Science 307: 935-9.

    Boyce M, Yuan J (2006). Cellular response to endoplasmic reticulum stress: a matter of life or death. Cell Death Differ 13: 363-73.

    Broker LE, Kruyt FA, Giaccone G (2005). Cell death independent of caspases: a review. Clin Cancer Res 11: 3155-62.

    Budihardjo I, Oliver H, Lutter M, Luo X, Wang X (1999). Biochemical pathways of caspase activation during apoptosis. Annu Rev Cell Dev Biol 15: 269-90.

    Cadron I, Van Gorp T, Timmerman D, Amant F, Waelkens E, Vergote I (2009). Application of proteomics in ovarian cancer: which sample should be used? Gynecol Oncol 115: 497-503.

    Cain K (2003). Chemical-induced apoptosis: formation of the Apaf-1 apoptosome. Drug Metab Rev 35: 337-63.

    Chen CH (2008). Review of a current role of mass spectrometry for proteome research. Anal Chim Acta 624: 16-36.

    Chen X, Jorgenson E, Cheung ST (2009). New tools for functional genomic analysis. Drug Discov Today 14: 754-60.

    Danial NN, Korsmeyer SJ (2004). Cell death: critical control points. Cell 116: 205-19.

    Desagher S, Martinou JC (2000). Mitochondria as the central control point of apoptosis. Trends Cell Biol 10: 369-77.

    Du C, Fang M, Li Y, Li L, Wang X (2000). Smac, a mitochondrial protein that promotes cytochrome c-dependent caspase activation by eliminating IAP inhibition. Cell 102: 33-42.

    Feliciello A, Gottesman ME, Avvedimento EV (2005). cAMP-PKA signaling to the mitochondria: protein scaffolds, mRNA and phosphatases. Cell Signal 17: 279-87.

    Fischer B, Marinov M, Arcaro A (2007). Targeting receptor tyrosine kinase signalling in small cell lung cancer (SCLC): what have we learned so far? Cancer Treat Rev 33: 391-406.

    Garrido C, Brunet M, Didelot C, Zermati Y, Schmitt E, Kroemer G (2006). Heat shock proteins 27 and 70: anti-apoptotic proteins with tumorigenic properties. Cell Cycle 5: 2592-601.

    Goodsell DS (2000). The molecular perspective: caspases. Oncologist 5: 435-6.

    Goodsell DS, Olson AJ (1990). Automated docking of substrates to proteins by simulated annealing. Proteins 8: 195-202.

    Granville CA, Dennis PA (2005). An overview of lung cancer genomics and proteomics. Am J Respir Cell Mol Biol 32: 169-76.

    Hirsch J, Hansen KC, Burlingame AL, Matthay MA (2004). Proteomics: current techniques and potential applications to lung disease. Am J Physiol Lung Cell Mol Physiol 287: L1-23.

    Hirt UA, Leist M (2003). Rapid, noninflammatory and PS-dependent phagocytic clearance of necrotic cells. Cell Death Differ 10: 1156-64.

    Hoffmann PR, deCathelineau AM, Ogden CA, Leverrier Y, Bratton DL, Daleke DL, Ridley AJ, Fadok VA, Henson PM (2001). Phosphatidylserine (PS) induces PS receptor-mediated macropinocytosis and promotes clearance of apoptotic cells. J Cell Biol 155: 649-59.

    Hunter T (1995). Protein kinases and phosphatases: the yin and yang of protein phosphorylation and signaling. Cell 80: 225-36.

    Jiang X, Wang X (2004). Cytochrome C-mediated apoptosis. Annu Rev Biochem 73: 87-106.

    Juan HF, Lin JY, Chang WH, Wu CY, Pan TL, Tseng MJ, Khoo KH, Chen ST (2002). Biomic study of human myeloid leukemia cells differentiation to macrophages using DNA array, proteomic, and bioinformatic analytical methods. Electrophoresis 23: 2490-504.

    Kerr JF, Wyllie AH, Currie AR (1972). Apoptosis: a basic biological phenomenon with wide-ranging implications in tissue kinetics. Br J Cancer 26: 239-57.

    Kikuchi T, Carbone DP (2007). Proteomics analysis in lung cancer: challenges and opportunities. Respirology 12: 22-8.

    Kojima E, Takeuchi A, Haneda M, Yagi A, Hasegawa T, Yamaki K, Takeda K, Akira S, Shimokata K, Isobe K (2003). The function of GADD34 is a recovery from a shutoff of protein synthesis induced by ER stress: elucidation by GADD34-deficient mice. Faseb J 17: 1573-5.

    Kucab JE, Lee C, Chen CS, Zhu J, Gilks CB, Cheang M, Huntsman D, Yorida E, Emerman J, Pollak M, Dunn SE (2005). Celecoxib analogues disrupt Akt signaling, which is commonly activated in primary breast tumours. Breast Cancer Res 7: R796-807.

    Laag E, Majidi M, Cekanova M, Masi T, Takahashi T, Schuller HM (2006). NNK activates ERK1/2 and CREB/ATF-1 via beta-1-AR and EGFR signaling in human lung adenocarcinoma and small airway epithelial cells. Int J Cancer 119: 1547-52.

    Liu X, Kim CN, Yang J, Jemmerson R, Wang X (1996). Induction of apoptotic program in cell-free extracts: requirement for dATP and cytochrome c. Cell 86: 147-57.

    Majidi M, Al-Wadei HA, Takahashi T, Schuller HM (2007). Nongenomic beta estrogen receptors enhance beta1 adrenergic signaling induced by the nicotine-derived carcinogen 4-(methylnitrosamino)-1-(3-pyridyl)-1-butanone in human small airway epithelial cells. Cancer Res 67: 6863-71.

    Marunaka Y, Niisato N (2003). H89, an inhibitor of protein kinase A (PKA), stimulates Na+ transport by translocating an epithelial Na+ channel (ENaC) in fetal rat alveolar type II epithelium. Biochem Pharmacol 66: 1083-9.

    Masai I, Yamaguchi M, Tonou-Fujimori N, Komori A, Okamoto H (2005). The hedgehog-PKA pathway regulates two distinct steps of the differentiation of retinal ganglion cells: the cell-cycle exit of retinoblasts and their neuronal maturation. Development 132: 1539-53.

    Mazieres J, He B, You L, Xu Z, Jablons DM (2005). Wnt signaling in lung cancer. Cancer Lett 222: 1-10.

    Mehmet H (2000). Caspases find a new place to hide. Nature 403: 29-30.

    Meier P, Vousden KH (2007). Lucifer's labyrinth--ten years of path finding in cell death. Mol Cell 28: 746-54.

    Montminy M (1997). Transcriptional regulation by cyclic AMP. Annu Rev Biochem 66: 807-22.

    Morris GM, Goodsell DS, Huey R, Olson AJ (1996). Distributed automated docking of flexible ligands to proteins: parallel applications of AutoDock 2.4. J Comput Aided Mol Des 10: 293-304.

    Munoz LE, Frey B, Pausch F, Baum W, Mueller RB, Brachvogel B, Poschl E, Rodel F, von der Mark K, Herrmann M, Gaipl US (2007). The role of annexin A5 in the modulation of the immune response against dying and dead cells. Curr Med Chem 14: 271-7.

    Nakagawa T, Zhu H, Morishima N, Li E, Xu J, Yankner BA, Yuan J (2000). Caspase-12 mediates endoplasmic-reticulum-specific apoptosis and cytotoxicity by amyloid-beta. Nature 403: 98-103.

    Narayana N, Diller TC, Koide K, Bunnage ME, Nicolaou KC, Brunton LL, Xuong NH, Ten Eyck LF, Taylor SS (1999). Crystal structure of the potent natural product inhibitor balanol in complex with the catalytic subunit of cAMP-dependent protein kinase. Biochemistry 38: 2367-76.

    Olsen MK, Reszka AA, Abraham I (1998). KT5720 and U-98017 inhibit MAPK and alter the cytoskeleton and cell morphology. J Cell Physiol 176: 525-36.

    Perez-Soler R (2009). Individualized therapy in non-small-cell lung cancer: future versus current clinical practice. Oncogene 28 Suppl 1: S38-45.

    Reade CA, Ganti AK (2009). EGFR targeted therapy in non-small cell lung cancer: potential role of cetuximab. Biologics 3: 215-24.

    Riedl SJ, Salvesen GS (2007). The apoptosome: signalling platform of cell death. Nat Rev Mol Cell Biol 8: 405-13.

    Rotonda J, Nicholson DW, Fazil KM, Gallant M, Gareau Y, Labelle M, Peterson EP, Rasper DM, Ruel R, Vaillancourt JP, Thornberry NA, Becker JW (1996). The three-dimensional structure of apopain/CPP32, a key mediator of apoptosis. Nat Struct Biol 3: 619-25.

    Shi Y (2002). Mechanisms of caspase activation and inhibition during apoptosis. Mol Cell 9: 459-70.

    Susin SA, Lorenzo HK, Zamzami N, Marzo I, Snow BE, Brothers GM, Mangion J, Jacotot E, Costantini P, Loeffler M, Larochette N, Goodlett DR, Aebersold R, Siderovski DP, Penninger JM, Kroemer G (1999). Molecular characterization of mitochondrial apoptosis-inducing factor. Nature 397: 441-6.

    Szegezdi E, Fitzgerald U, Samali A (2003). Caspase-12 and ER-stress-mediated apoptosis: the story so far. Ann N Y Acad Sci 1010: 186-94.

    Taylor RC, Cullen SP, Martin SJ (2008). Apoptosis: controlled demolition at the cellular level. Nat Rev Mol Cell Biol 9: 231-41.

    Thompson CB (1995). Apoptosis in the pathogenesis and treatment of disease. Science 267: 1456-62.

    Thornberry NA, Lazebnik Y (1998). Caspases: enemies within. Science 281: 1312-6.

    Tong Z, Wu X, Chen CS, Kehrer JP (2006). Cytotoxicity of a non-cyclooxygenase-2 inhibitory derivative of celecoxib in non-small-cell lung cancer A549 cells. Lung Cancer 52: 117-24.

    Uematsu K, He B, You L, Xu Z, McCormick F, Jablons DM (2003). Activation of the Wnt pathway in non small cell lung cancer: evidence of dishevelled overexpression. Oncogene 22: 7218-21.

    Walker NP, Talanian RV, Brady KD, Dang LC, Bump NJ, Ferenz CR, Franklin S, Ghayur T, Hackett MC, Hammill LD, et al. (1994). Crystal structure of the cysteine protease interleukin-1 beta-converting enzyme: a (p20/p10)2 homodimer. Cell 78: 343-52.

    Watanabe N, Broome M, Hunter T (1995). Regulation of the human WEE1Hu CDK tyrosine 15-kinase during the cell cycle. EMBO J 14: 1878-91.

    Webster J, Oxley D (2005). Peptide mass fingerprinting: protein identification using MALDI-TOF mass spectrometry. Methods Mol Biol 310: 227-40.

    Williamson P, Schlegel RA (2004). Hide and seek: the secret identity of the phosphatidylserine receptor. J Biol 3: 14.

    Wilson KP, Black JA, Thomson JA, Kim EE, Griffith JP, Navia MA, Murcko MA, Chambers SP, Aldape RA, Raybuck SA, et al. (1994). Structure and mechanism of interleukin-1 beta converting enzyme. Nature 370: 270-5.

    Wyllie AH, Kerr JF, Currie AR (1980). Cell death: the significance of apoptosis. Int Rev Cytol 68: 251-306.

    Xu W, Neckers L (2007). Targeting the molecular chaperone heat shock protein 90 provides a multifaceted effect on diverse cell signaling pathways of cancer cells. Clin Cancer Res 13: 1625-9.

    Zhu J, Huang JW, Tseng PH, Yang YT, Fowble J, Shiau CW, Shaw YJ, Kulp SK, Chen CS (2004). From the cyclooxygenase-2 inhibitor celecoxib to a novel class of 3-phosphoinositide-dependent protein kinase-1 inhibitors. Cancer Res 64: 4309-18.

    Zhu J, Song X, Lin HP, Young DC, Yan S, Marquez VE, Chen CS (2002). Using cyclooxygenase-2 inhibitors as molecular platforms to develop a new class of apoptosis-inducing agents. J Natl Cancer Inst 94: 1745-57.

    Abella JV, Park M (2009). Breakdown of endocytosis in the oncogenic activation of receptor tyrosine kinases. Am J Physiol Endocrinol Metab 296: E973-84.

    Accornero P, Lattanzio G, Mangano T, Chiarle R, Taulli R, Bersani F, Forni PE, Miretti S, Scuoppo C, Dastru W, Christensen JG, Crepaldi T, Ponzetto C (2008). An in vivo model of Met-driven lymphoma as a tool to explore the therapeutic potential of Met inhibitors. Clin Cancer Res 14: 2220-6.

    Amit I, Wides R, Yarden Y (2007). Evolvable signaling networks of receptor tyrosine kinases: relevance of robustness to malignancy and to cancer therapy. Mol Syst Biol 3: 151.

    Bao J, Alroy I, Waterman H, Schejter ED, Brodie C, Gruenberg J, Yarden Y (2000). Threonine phosphorylation diverts internalized epidermal growth factor receptors from a degradative pathway to the recycling endosome. J Biol Chem 275: 26178-86.

    Baselga J (2006). Targeting tyrosine kinases in cancer: the second wave. Science 312: 1175-8.

    Bazley LA, Gullick WJ (2005). The epidermal growth factor receptor family. Endocr Relat Cancer 12 Suppl 1: S17-27.

    Ben-Kasus T, Schechter B, Sela M, Yarden Y (2007). Cancer therapeutic antibodies come of age: targeting minimal residual disease. Mol Oncol 1: 42-54.

    Blume-Jensen P, Hunter T (2001). Oncogenic kinase signalling. Nature 411: 355-65.

    Burgess AW, Cho HS, Eigenbrot C, Ferguson KM, Garrett TP, Leahy DJ, Lemmon MA, Sliwkowski MX, Ward CW, Yokoyama S (2003). An open-and-shut case? Recent insights into the activation of EGF/ErbB receptors. Mol Cell 12: 541-52.

    Burke P, Schooler K, Wiley HS (2001). Regulation of epidermal growth factor receptor signaling by endocytosis and intracellular trafficking. Mol Biol Cell 12: 1897-910.

    Burris HA, 3rd (2004). Dual kinase inhibition in the treatment of breast cancer: initial experience with the EGFR/ErbB-2 inhibitor lapatinib. Oncologist 9 Suppl 3: 10-5.

    Caligiuri MA, Briesewitz R, Yu J, Wang L, Wei M, Arnoczky KJ, Marburger TB, Wen J, Perrotti D, Bloomfield CD, Whitman SP (2007). Novel c-CBL and CBL-b ubiquitin ligase mutations in human acute myeloid leukemia. Blood 110: 1022-4.

    Carmeliet P, Jain RK (2000). Angiogenesis in cancer and other diseases. Nature 407: 249-57.

    Castellone MD, Teramoto H, Williams BO, Druey KM, Gutkind JS (2005). Prostaglandin E2 promotes colon cancer cell growth through a Gs-axin-beta-catenin signaling axis. Science 310: 1504-10.

    Chattopadhyay C, El-Naggar AK, Williams MD, Clayman GL (2008). Small molecule c-MET inhibitor PHA665752: effect on cell growth and motility in papillary thyroid carcinoma. Head Neck 30: 991-1000.

    Christensen JG, Schreck R, Burrows J, Kuruganti P, Chan E, Le P, Chen J, Wang X, Ruslim L, Blake R, Lipson KE, Ramphal J, Do S, Cui JJ, Cherrington JM, Mendel DB (2003). A selective small molecule inhibitor of c-Met kinase inhibits c-Met-dependent phenotypes in vitro and exhibits cytoreductive antitumor activity in vivo. Cancer Res 63: 7345-55.

    Citri A, Yarden Y (2006). EGF-ERBB signalling: towards the systems level. Nat Rev Mol Cell Biol 7: 505-16.

    Clague MJ, Urbe S (2001). The interface of receptor trafficking and signalling. J Cell Sci 114: 3075-81.

    Clynes RA, Towers TL, Presta LG, Ravetch JV (2000). Inhibitory Fc receptors modulate in vivo cytoxicity against tumor targets. Nat Med 6: 443-6.

    Dunbar AJ, Gondek LP, O'Keefe CL, Makishima H, Rataul MS, Szpurka H, Sekeres MA, Wang XF, McDevitt MA, Maciejewski JP (2008). 250K single nucleotide polymorphism array karyotyping identifies acquired uniparental disomy and homozygous mutations, including novel missense substitutions of c-Cbl, in myeloid malignancies. Cancer Res 68: 10349-57.

    Engelman JA, Zejnullahu K, Mitsudomi T, Song Y, Hyland C, Park JO, Lindeman N, Gale CM, Zhao X, Christensen J, Kosaka T, Holmes AJ, Rogers AM, Cappuzzo F, Mok T, Lee C, Johnson BE, Cantley LC, Janne PA (2007). MET amplification leads to gefitinib resistance in lung cancer by activating ERBB3 signaling. Science 316: 1039-43.

    Ferrara N (2005). VEGF as a therapeutic target in cancer. Oncology 69 Suppl 3: 11-6.

    Fischer B, Marinov M, Arcaro A (2007). Targeting receptor tyrosine kinase signalling in small cell lung cancer (SCLC): what have we learned so far? Cancer Treat Rev 33: 391-406.

    Fu YN, Yeh CL, Cheng HH, Yang CH, Tsai SF, Huang SF, Chen YR (2008). EGFR mutants found in non-small cell lung cancer show different levels of sensitivity to suppression of Src: implications in targeting therapy. Oncogene 27: 957-65.

    Fukazawa T, Miyake S, Band V, Band H (1996). Tyrosine phosphorylation of Cbl upon epidermal growth factor (EGF) stimulation and its association with EGF receptor and downstream signaling proteins. J Biol Chem 271: 14554-9.

    Grand FH, Hidalgo-Curtis CE, Ernst T, Zoi K, Zoi C, McGuire C, Kreil S, Jones A, Score J, Metzgeroth G, Oscier D, Hall A, Brandts C, Serve H, Reiter A, Chase AJ, Cross NC (2009). Frequent CBL mutations associated with 11q acquired uniparental disomy in myeloproliferative neoplasms. Blood 113: 6182-92.

    Hov H, Holt RU, Ro TB, Fagerli UM, Hjorth-Hansen H, Baykov V, Christensen JG, Waage A, Sundan A, Borset M (2004). A selective c-met inhibitor blocks an autocrine hepatocyte growth factor growth loop in ANBL-6 cells and prevents migration and adhesion of myeloma cells. Clin Cancer Res 10: 6686-94.

    Hubbard SR, Miller WT (2007). Receptor tyrosine kinases: mechanisms of activation and signaling. Curr Opin Cell Biol 19: 117-23.

    Jemal A, Murray T, Ward E, Samuels A, Tiwari RC, Ghafoor A, Feuer EJ, Thun MJ (2005). Cancer statistics, 2005. CA Cancer J Clin 55: 10-30.

    Joazeiro CA, Wing SS, Huang H, Leverson JD, Hunter T, Liu YC (1999). The tyrosine kinase negative regulator c-Cbl as a RING-type, E2-dependent ubiquitin-protein ligase. Science 286: 309-12.

    Johnston S, Trudeau M, Kaufman B, Boussen H, Blackwell K, LoRusso P, Lombardi DP, Ben Ahmed S, Citrin DL, DeSilvio ML, Harris J, Westlund RE, Salazar V, Zaks TZ, Spector NL (2008). Phase II study of predictive biomarker profiles for response targeting human epidermal growth factor receptor 2 (HER-2) in advanced inflammatory breast cancer with lapatinib monotherapy. J Clin Oncol 26: 1066-72.

    Kirisako T, Kamei K, Murata S, Kato M, Fukumoto H, Kanie M, Sano S, Tokunaga F, Tanaka K, Iwai K (2006). A ubiquitin ligase complex assembles linear polyubiquitin chains. EMBO J 25: 4877-87.

    Kong-Beltran M, Seshagiri S, Zha J, Zhu W, Bhawe K, Mendoza N, Holcomb T, Pujara K, Stinson J, Fu L, Severin C, Rangell L, Schwall R, Amler L, Wickramasinghe D, Yauch R (2006). Somatic mutations lead to an oncogenic deletion of met in lung cancer. Cancer Res 66: 283-9.

    Krishnaswamy S, Kanteti R, Duke-Cohan JS, Loganathan S, Liu W, Ma PC, Sattler M, Singleton PA, Ramnath N, Innocenti F, Nicolae DL, Ouyang Z, Liang J, Minna J, Kozloff MF, Ferguson MK, Natarajan V, Wang YC, Garcia JG, Vokes EE, Salgia R (2009). Ethnic differences and functional analysis of MET mutations in lung cancer. Clin Cancer Res 15: 5714-23.

    Kucab JE, Lee C, Chen CS, Zhu J, Gilks CB, Cheang M, Huntsman D, Yorida E, Emerman J, Pollak M, Dunn SE (2005). Celecoxib analogues disrupt Akt signaling, which is commonly activated in primary breast tumours. Breast Cancer Res 7: R796-807.

    Langdon WY, Hyland CD, Grumont RJ, Morse HC, 3rd (1989). The c-cbl proto-oncogene is preferentially expressed in thymus and testis tissue and encodes a nuclear protein. J Virol 63: 5420-4.

    Levkowitz G, Waterman H, Zamir E, Kam Z, Oved S, Langdon WY, Beguinot L, Geiger B, Yarden Y (1998). c-Cbl/Sli-1 regulates endocytic sorting and ubiquitination of the epidermal growth factor receptor. Genes Dev 12: 3663-74.

    Liao AT, McMahon M, London C (2005). Characterization, expression and function of c-Met in canine spontaneous cancers. Vet Comp Oncol 3: 61-72.

    Lill NL, Douillard P, Awwad RA, Ota S, Lupher ML, Jr., Miyake S, Meissner-Lula N, Hsu VW, Band H (2000). The evolutionarily conserved N-terminal region of Cbl is sufficient to enhance down-regulation of the epidermal growth factor receptor. J Biol Chem 275: 367-77.

    Ma PC, Maulik G, Christensen J, Salgia R (2003). c-Met: structure, functions and potential for therapeutic inhibition. Cancer Metastasis Rev 22: 309-25.

    Ma PC, Tretiakova MS, MacKinnon AC, Ramnath N, Johnson C, Dietrich S, Seiwert T, Christensen JG, Jagadeeswaran R, Krausz T, Vokes EE, Husain AN, Salgia R (2008). Expression and mutational analysis of MET in human solid cancers. Genes Chromosomes Cancer 47: 1025-37.

    Manning G, Whyte DB, Martinez R, Hunter T, Sudarsanam S (2002). The protein kinase complement of the human genome. Science 298: 1912-34.

    Meisner H, Czech MP (1995). Coupling of the proto-oncogene product c-Cbl to the epidermal growth factor receptor. J Biol Chem 270: 25332-5.

    Meng W, Sawasdikosol S, Burakoff SJ, Eck MJ (1999). Structure of the amino-terminal domain of Cbl complexed to its binding site on ZAP-70 kinase. Nature 398: 84-90.

    Miyake S, Mullane-Robinson KP, Lill NL, Douillard P, Band H (1999). Cbl-mediated negative regulation of platelet-derived growth factor receptor-dependent cell proliferation. A critical role for Cbl tyrosine kinase-binding domain. J Biol Chem 274: 16619-28.

    Montemurro F, Valabrega G, Aglietta M (2007). Lapatinib: a dual inhibitor of EGFR and HER2 tyrosine kinase activity. Expert Opin Biol Ther 7: 257-68.

    Mukohara T, Civiello G, Davis IJ, Taffaro ML, Christensen J, Fisher DE, Johnson BE, Janne PA (2005). Inhibition of the met receptor in mesothelioma. Clin Cancer Res 11: 8122-30.

    Murphy MA, Schnall RG, Venter DJ, Barnett L, Bertoncello I, Thien CB, Langdon WY, Bowtell DD (1998). Tissue hyperplasia and enhanced T-cell signalling via ZAP-70 in c-Cbl-deficient mice. Mol Cell Biol 18: 4872-82.

    Naramura M, Kole HK, Hu RJ, Gu H (1998). Altered thymic positive selection and intracellular signals in Cbl-deficient mice. Proc Natl Acad Sci U S A 95: 15547-52.

    Oda K, Matsuoka Y, Funahashi A, Kitano H (2005). A comprehensive pathway map of epidermal growth factor receptor signaling. Mol Syst Biol 1: 2005 0010.

    Peng J, Schwartz D, Elias JE, Thoreen CC, Cheng D, Marsischky G, Roelofs J, Finley D, Gygi SP (2003). A proteomics approach to understanding protein ubiquitination. Nat Biotechnol 21: 921-6.

    Pennock S, Wang Z (2008). A tale of two Cbls: interplay of c-Cbl and Cbl-b in epidermal growth factor receptor downregulation. Mol Cell Biol 28: 3020-37.

    Peschard P, Fournier TM, Lamorte L, Naujokas MA, Band H, Langdon WY, Park M (2001). Mutation of the c-Cbl TKB domain binding site on the Met receptor tyrosine kinase converts it into a transforming protein. Mol Cell 8: 995-1004.

    Puri N, Khramtsov A, Ahmed S, Nallasura V, Hetzel JT, Jagadeeswaran R, Karczmar G, Salgia R (2007). A selective small molecule inhibitor of c-Met, PHA665752, inhibits tumorigenicity and angiogenesis in mouse lung cancer xenografts. Cancer Res 67: 3529-34.

    Rao N, Dodge I, Band H (2002). The Cbl family of ubiquitin ligases: critical negative regulators of tyrosine kinase signaling in the immune system. J Leukoc Biol 71: 753-63.

    Reindl C, Quentmeier H, Petropoulos K, Greif PA, Benthaus T, Argiropoulos B, Mellert G, Vempati S, Duyster J, Buske C, Bohlander SK, Humphries KR, Hiddemann W, Spiekermann K (2009). CBL Exon 8/9 Mutants Activate the FLT3 Pathway and Cluster in Core Binding Factor/11q Deletion Acute Myeloid Leukemia/Myelodysplastic Syndrome Subtypes. Clin Cancer Res 15: 2238-2247.

    Robinson DR, Wu YM, Lin SF (2000). The protein tyrosine kinase family of the human genome. Oncogene 19: 5548-57.

    Sanada M, Suzuki T, Shih LY, Otsu M, Kato M, Yamazaki S, Tamura A, Honda H, Sakata-Yanagimoto M, Kumano K, Oda H, Yamagata T, Takita J, Gotoh N, Nakazaki K, Kawamata N, Onodera M, Nobuyoshi M, Hayashi Y, Harada H, Kurokawa M, Chiba S, Mori H, Ozawa K, Omine M, Hirai H, Nakauchi H, Koeffler HP, Ogawa S (2009). Gain-of-function of mutated C-CBL tumour suppressor in myeloid neoplasms. Nature 460: 904-8.

    Sargin B, Choudhary C, Crosetto N, Schmidt MH, Grundler R, Rensinghoff M, Thiessen C, Tickenbrock L, Schwable J, Brandts C, August B, Koschmieder S, Bandi SR, Duyster J, Berdel WE, Muller-Tidow C, Dikic I, Serve H (2007). Flt3-dependent transformation by inactivating c-Cbl mutations in AML. Blood 110: 1004-12.

    Shtiegman K, Kochupurakkal BS, Zwang Y, Pines G, Starr A, Vexler A, Citri A, Katz M, Lavi S, Ben-Basat Y, Benjamin S, Corso S, Gan J, Yosef RB, Giordano S, Yarden Y (2007). Defective ubiquitinylation of EGFR mutants of lung cancer confers prolonged signaling. Oncogene 26: 6968-78.

    Slape C, Liu LY, Beachy S, Aplan PD (2008). Leukemic transformation in mice expressing a NUP98-HOXD13 transgene is accompanied by spontaneous mutations in Nras, Kras, and Cbl. Blood 112: 2017-9.

    Smolen GA, Sordella R, Muir B, Mohapatra G, Barmettler A, Archibald H, Kim WJ, Okimoto RA, Bell DW, Sgroi DC, Christensen JG, Settleman J, Haber DA (2006). Amplification of MET may identify a subset of cancers with extreme sensitivity to the selective tyrosine kinase inhibitor PHA-665752. Proc Natl Acad Sci U S A 103: 2316-21.

    Swaminathan G, Tsygankov AY (2006). The Cbl family proteins: ring leaders in regulation of cell signaling. J Cell Physiol 209: 21-43.

    Thien CB, Langdon WY (1997). EGF receptor binding and transformation by v-cbl is ablated by the introduction of a loss-of-function mutation from the Caenorhabditis elegans sli-1 gene. Oncogene 14: 2239-49.

    Thien CB, Langdon WY (2001). Cbl: many adaptations to regulate protein tyrosine kinases. Nat Rev Mol Cell Biol 2: 294-307.

    Thien CB, Walker F, Langdon WY (2001). RING finger mutations that abolish c-Cbl-directed polyubiquitination and downregulation of the EGF receptor are insufficient for cell transformation. Mol Cell 7: 355-65.

    To CT, Tsao MS (1998). The roles of hepatocyte growth factor/scatter factor and met receptor in human cancers (Review). Oncol Rep 5: 1013-24.

    Tong Z, Wu X, Chen CS, Kehrer JP (2006). Cytotoxicity of a non-cyclooxygenase-2 inhibitory derivative of celecoxib in non-small-cell lung cancer A549 cells. Lung Cancer 52: 117-24.

    Travis WD, Lubin J, Ries L, Devesa S (1996). United States lung carcinoma incidence trends: declining for most histologic types among males, increasing among females. Cancer 77: 2464-70.

    Trusolino L, Comoglio PM (2002). Scatter-factor and semaphorin receptors: cell signalling for invasive growth. Nat Rev Cancer 2: 289-300.

    Waterman H, Levkowitz G, Alroy I, Yarden Y (1999). The RING finger of c-Cbl mediates desensitization of the epidermal growth factor receptor. J Biol Chem 274: 22151-4.

    Watson GA, Zhang X, Stang MT, Levy RM, Queiroz de Oliveira PE, Gooding WE, Christensen JG, Hughes SJ (2006). Inhibition of c-Met as a therapeutic strategy for esophageal adenocarcinoma. Neoplasia 8: 949-55.

    Yang Y, Wislez M, Fujimoto N, Prudkin L, Izzo JG, Uno F, Ji L, Hanna AE, Langley RR, Liu D, Johnson FM, Wistuba I, Kurie JM (2008). A selective small molecule inhibitor of c-Met, PHA-665752, reverses lung premalignancy induced by mutant K-ras. Mol Cancer Ther 7: 952-60.

    Zheng N, Wang P, Jeffrey PD, Pavletich NP (2000). Structure of a c-Cbl-UbcH7 complex: RING domain function in ubiquitin-protein ligases. Cell 102: 533-9.

    Zhimin L, Tony H (2009). Degradation of activated protein kinases by ubiquitination. Annu Rev Biochem 78: 435-75.

    Zhu J, Song X, Lin HP, Young DC, Yan S, Marquez VE, Chen CS (2002). Using cyclooxygenase-2 inhibitors as molecular platforms to develop a new class of apoptosis-inducing agents. J Natl Cancer Inst 94: 1745-57.

    下載圖示
    QR CODE