為了瞭解夏季台灣北部午後降雨機制,本研究以WRF Model針對2008年夏季午後降雨個案進行數值模擬,共挑選3個午後強降雨個案進行天氣分析,分別為2008年6月28日、8月17日以及8月23日。研究結果顯示,數值模式可掌握北部區域午後對流胞的生成、移動到消散之環境動力與熱力機制,且發現夏季對流系統發展受北部地形影響明顯,包括環境風場與地形輻合作用、淡水和基隆河口於白天海風的建立、午後雪山山脈西側下坡風的發展,以及台北盆地日間之增溫效應等。
利用模擬氣流線變化,發現上游氣流遇中央山脈南端地形分流角度不同,於台灣北部海域合流位置也有所不同,於台灣西南海域之氣流越接近南-北走向,下游合流區越靠近台灣北方海域,若西南海域風場之西風分量較多,合流位置則較靠近宜蘭東方海域,綜觀環境流場與合流區位置不同,將影響台灣北部風場結構,進而改變對流激發型態與發展趨勢。模擬近地面風場受地形影響之強輻合帶比較,發現對流發展期近地面輻合帶位置各不相同,隨後對流發展與此時輻合帶位置有密切關係。
發現上午盆地加熱率增加,建立平原往盆地之風場,對於盆地風場變化扮演重要角色。由對流垂直結構分析,發現對流胞內有強盛上升氣流,且中層有水平強風區存在時,環流風場隨高度向水平風下游方向傾斜,並將部分雨滴帶到雲區下游,使降雨範圍延伸較廣。而海風環流與山風界面於模擬中有一鋒區存在,依空氣性質差異,區分為淡水河口至雪山山脈切面的山風鋒區,與台北盆地至基隆河口切面的海風鋒區,鋒區上方垂直速度較強,並於近地面伴隨強輻合區,因此強對流胞多發生於鋒區位置。
沈義欽,2006:北台灣超大豪雨個案之中尺度分析:2004年9月10-11日。國立台灣大學大氣科學研究所碩士論文。
林李耀與郭鴻基,2000:不同水氣垂直結構的颮線模擬測試。大氣科學,28,143-160。
卓智祥,2006:梅雨季北臺灣雷暴系統之中尺度分析。國立台灣大學大氣科學研究所碩士論文。
紀水上、陳泰然及郭世昌,1997:梅雨季台灣地區平均雲頂溫度之時空分布特徵探討。大氣科學,26,1-18。
許武榮與侯昭平,1997:海風環流與陸地對流邊界層交互影響之數值研究。大氣科學,25,397-418。
陳泰然、周鴻祺、廖珮娟及楊進賢,2009:暖季台灣中北部午後連續對流的氣候特徵研究。大氣科學,37,49-86。
陳熙揚、陳泰然及林麗芬,1999:台灣北部地區五~七月雷達回波特徵與局部環流探討。大氣科學,28,73-90。
陳慶昌、嚴明鉦及王世宇,2008:台灣與東亞之夏季季風降雨變化。大氣科學,35,305-352。
Akaeda, K., J. Reisner, and D. Parsons, 1995: The role of mesoscale and topographically induced circulations in initiating a flash flood observed during the TAMEX project. Monthly Weather Review: Vol. 123, pp. 1720-1739.
Banta, R. M., and C. B. Schaaf, 1986: Thunderstorm genesis zones in the Colorado Rocky Mountains as determined by traceback of Geosynchronous satellite images. Monthly Weather Review: Vol. 115, No. 2, pp. 463-476.
Bluestein, H. B. 1993: Observations and theory of weather systems. Vol. 2. Synoptic-Dynamic Meteorology in Midlatitudes, Oxford University Press: pp. 594.
Carbone, R. E., W. A. Cooper, and W. C. Lee, 1995: On the forcing of flow reversal along the windward slopes of Hawaii. Monthly Weather Review. Vol. 123, No. 12, pp. 3466-3480.
Charba, J. 1974: Application of gravity current model to analysis of squall-line gust front. Monthly Weather Review. Vol. 102, No. 2, pp. 140-156.
Chen, T. C., M. C. Yen, J. C. Hsieh, and R. W. Arritt, 1999: Diurnal and seasonal variations of the rainfall measured by the automatic rainfall and meteorological telemetry system in Taiwan. Bull. Amer. Meteor. Soc.: Vol. 80, No. 11, pp. 2299-2312.
Chen, T. C., S. Y. Wang, and M. C. Yen, 2007: Enhancement of afternoon thunderstorm activity by urbanization in a valley: Taipei. Journal of Applied Meteorology and Climatology: Vol. 46, No. 9, pp. 1324-1340.
Chen, Y. L., and J. J. Wang, 1994: Diurnal variation of surface thermodynamic fields on the island of Hawaii. Monthly Weather Review. Vol. 122, pp. 2125- 2138.
Fujita, T., 1960: Mesometeorological study of pressure and wind fields beneath isolated radar echoes. Univ. of Chicago, Dept. of Meteor,. Final Rep. to U.S. Wea. Bur: Contract No. Cwb 9762, pp. 1-5.
Goff, R. C., 1976: Vertical structure of thunderstorm outflows. Monthly Weather Review. Vol. 104, No. 11, pp. 1429-1440.
Grimsdell, A. W., and W. M. Angevine, 2001: Observations of the afternoon transition of the convective boundary layer. Journal of Applied Meteorology: Vol. 41, pp. 3-11.
Kimura, F., and T. Kuwagata, 1993: Thermally induced wind passing from plain to basin over a mountain range. Journal of Applied Meteorology: Vol. 32, No. 9, pp. 1538-1547.
Kingsmill, D.E, and R. M. Wakimoto, 1991: Kinematic, dynamic, and thermodynamic analysis of a weakly sheared severe thunderstorm over Northern Alabama. Monthly Weather Review: Vol. 119, No. 2, pp. 262-297.
Laird, N. F., D. A.R. Kristovich, R. M. Rauber, H. T. Ochs III, and L. J. Miller, 1995: The cape canaveral sea and river breezes: Kinematic structure and convective initiation. Monthly Weather Review: Vol. 123, No. 10, pp. 2942-2956.
Moroz, W. J., and E.W. Hewson, 1966: The mesoscale interaction of a lake breeze and low level outflow from a thunderstorm. Journal of Applied Meteorology: Vol. 5, No. 2, pp. 148-155.
Rowell, D. P., and J. R. Milford, 1993: On the generation of African squall lines. Journal of Applied Meteorology and Climatology: Vol. 6, pp. 1181-1193.
Smolarkiewicz, P. K., R. M. Rasmussen, and T. L. Clark, 1988: On the dynamics of Hawaiian cloud bands: Island forcing. Journal of the Atmospheric Sciences: Vol. 45, pp. 1872-1905.
Stephan, F. J. de Wekker, S. Zhong, J. D. Fast, and C. D. Whiteman, 1997: A numerical study of the thermally driven plain-to-basin wind over idealized basin topographies. Journal of Applied Meteorology: Vol. 37, No. 6, pp. 606-622.
Tian, W., and D. J. Parker, 2003: A modeling study and scaling analysis of orographic effects on boundary layer shallow convection. Journal of the Atmospheric Sciences: Vol. 60, pp. 1981-1991.
Tucker, D. F., and N. A. Crook, 1999: The generation of a mesoscale convective system from mountain convection. Monthly Weather Review: Vol. 127, pp. 1259-1273.
Wilson, J. W., and D. L. Megenhardt, 1997: Thunderstorm initiation, organization, and lifetime associated with Florida boundary layer convergence lines. Monthly Weather Review: Vol. 125, No. 7, pp. 1507-1525.
Yeh, H. C., and Y. L. Chen, 1998: Characteristics of rainfall distributions over Taiwan during the Taiwan Area Mesoscale Experiment (TAMEX). Journal of Applied Meteorology: Vol. 37, No. 11, pp. 1457-1469.
Yonetani, T., 1982: Increase in number of days with heavy precipitation in Tokyo urban area. Journal of Applied Meteorology: Vol. 21, No. 10, pp. 1466-1471.