簡易檢索 / 詳目顯示

研究生: 羅英元
Lo, Ying-Yuan
論文名稱: 臺灣產貓蛛科蜘蛛之系統分類和都市化對其遺傳多樣性之影響
Systematics and the effect of urbanization on genetic diversity of lynx spiders (Araneae: Oxyopidae) in Taiwan
指導教授: 林仲平
Lin, Chung-Ping
口試委員: 林仲平
Lin, Chung-Ping
徐堉峰
Hsu, Yu-Feng
蘇詠超
Su, Yong-Chao
曾惠芸
Tseng, Hui-Yun
黃仁磐
Huang, Jen-Pan
口試日期: 2024/07/18
學位類別: 博士
Doctor
系所名稱: 生命科學系
Department of Life Science
論文出版年: 2024
畢業學年度: 112
語文別: 英文
論文頁數: 257
中文關鍵詞: 連通性保育特有種地景形態空間普氏分析
英文關鍵詞: connectivity, conservation, endemic species, landscape, morphospace, Procrustes analysis
研究方法: 實驗設計法調查研究
DOI URL: http://doi.org/10.6345/NTNU202401549
論文種類: 學術論文
相關次數: 點閱:136下載:2
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 在面臨生物多樣性持續流失的壓力下,加速釐清野生物的多樣性資訊、親緣關係和生態演化是生物多樣性保育的重要基礎。貓蛛科蜘蛛為狼蛛總科的成員,是物種多樣性相當高的遊獵型蜘蛛,廣泛分布於草生地、灌木叢和樹冠層等不同棲息地,也是都市、農業生態系中相當普遍的蜘蛛之一。牠們在臺灣的物種多樣性是被大幅低估的,因此本研究首先對臺灣產貓蛛科進行全面性的分類整理,並使用整合性物種界定方法探討牠們的物種界限,包含ABGD、ABSP、bPTP、 GMYC、BPP等。根據形態證據,共整理出5屬16種,包含7個新種(Hamataliwa cordivulva sp. nov.、Hamat. leporauris sp. nov.、Oxyopes hasta sp. nov.、O. taiwanensis sp. nov.、Tapponia auriola sp. nov.、T. parva sp. nov.、T. rarobulbus sp. nov.)和7個新紀錄種(Hamadruas hieroglyphica (Thorell, 1887)、Hamat. foveata Tang & Li, 2012、O. fujianicus Song & Zhu, 1993、O. sertatoides Xie & Kim, 1996、O. striagatus Song, 1991、O. sushilae Tikader, 1965、Peucetia latikae Tikader, 1970),而 P. formosensis Kishida, 1930 則列爲疑問種。依據K2P模型計算樣本間的COI基因遺傳距離,結果顯示以遺傳距離3%為閾值可有效鑑定多數物種,然而部分物種間的界限並不明確,例如 O. sertatus 和 O. taiwanensis sp. nov.,以及 Hamat. cordivulva sp. nov. 和 Hamata. foveata 之間都有明確的生殖結構差異,但是ABGD、ASAP、bPTP、GMYC等方法都無法區別;相反的,T. parva sp. nov. 的種內遺傳距離大於4%,但未有明確的形態分化證據。此外,本研究透過5個分子遺傳標記(12S rRNA、18S rRNA、28S rRNA、COI、histone H3)來釐清貓蛛科內的親緣關係,資料集共包含6屬42種。最大似然法(ML)和貝葉斯推理法(BI)所重建的分子系統發育樹支持貓蛛科包含3大支系,包括:(1)Peucetia和 Tapinillus;(2)Oxyopes;(3)Hamadruas、Hamataliwa和Tapponia。除了 Tapponia 以外,各屬皆為單系群,但Hamataliwa 和 Tapponia 之間的關係和屬徵定義有待釐清。透過幾何形態學方法分析背甲形狀和眼式位置的變異,發現除了Hamadruas和Oxyopes的形態空間完全重疊之外,背甲形狀在不同性別及各屬之間皆具有明顯的差異,並且展現系統發育信號;同時,我們也探討背甲形狀變異與貓蛛的步足形態與活動模式之間的關聯,發現貓蛛科可能起源於較頻繁移動的活動模式,其步足相對較長、背甲也具有更寬大的胸區,其後演化出定棲活動模式的類群,其步足比例較短,背甲胸區則未特別突出。
    斜紋貓蛛(O. sertatus)是臺灣低海拔山區、農地及都市綠地廣泛分布的物種,因此是探討都市化過程對野生物遺傳多樣性影響的理想材料。目前有兩個假說被提出,即「都市破碎化模型」預期都市對生物的擴散是種屏障,而「都市促進模型」則預期都市對適應者的擴散來說扮演著廊道的作用。我們於台中及南投地區選取17個不同都市化程度的樣點,利用4 km2(地景尺度)及0.25 km2(局部尺度)範圍內土地利用組成作爲量化都市化程度的依據,並利用COI與RAD-seq資料分析斜紋貓蛛族群內的遺傳變異、族群間的遺傳分化和遺傳結構。結果顯示,許多遺傳多樣性指數都有伴隨都市化程度增加而下降的趨勢,特別是雜合度觀測值(observed heterozygosity, HO)在0.25 km2及4 km2尺度下,以及對偶基因豐富度(allelic richness, Ar)在4 km2尺度下皆有顯著的降低,不過核苷酸多樣性則不受影響;此外,族群間的COI及RAD-seq遺傳分化指數,在都市區域顯著高於非都市區域。這些結果皆符合「都市破碎化模型」的預期,即都市內因自然棲地有限、面積小且互相隔離,導致小族群、遺傳漂變作用增強及遺傳多樣性的流失;不過STRUCTURE和PCA分析結果並未顯示有族群遺傳結構,表示都市和非都市族群間仍有相當程度的基因流動。
    總結來說,本論文作為首次探討全面探討貓蛛科蜘蛛的物種多樣性和親緣關係,強調了形態診斷與其他整合性物種界定方法對精確評估物種多樣性的重要性,以及背甲形態在親緣關係和活動型態適應的關聯;最後,也突顯改善都市自然棲地的品質與連結的需求,以確保都市野生物、生態系統服務與功能的永續發展。

    In the face of the ongoing loss of biodiversity attributed to anthropogenic pressures, a comprehensive understanding of species diversity, phylogenetic relationship, and the evolutionary history of wildlife is fundamental knowledge for biological conservation. The family Oxyopidae (lynx spider) is members of the superfamily Lycosoidea and represents one of the most diverse and widespread groups of cursorial spiders. They are widely distributed in various habitats such as grasslands, shrubs, and forest canopies and are also common in urban and agricultural ecosystems. The species diversity of lynx spiders in Taiwan was significantly underestimated. Therefore, this study first conducted a comprehensive taxonomic revision of Taiwanese lynx spiders and investigated their species boundaries using an integrative species delimitation approach by including morphological and molecular evidence from ABGD, ASAP, bPTP, GMYC, and BPP analyses. Based on morphological evidence, 16 species in five genera were recognized, including seven new species (Hamataliwa cordivulva sp. nov., Hamat. leporauris sp. nov., Oxyopes hasta sp. nov., O. taiwanensis sp. nov., Tapponia auriola sp. nov., T. parva sp. nov., T. rarobulbus sp. nov.) and seven newly recorded species (Hamadruas hieroglyphica (Thorell, 1887), Hamat. foveata Tang & Li, 2012, O. fujianicus Song & Zhu, 1993, O. sertatoides Xie & Kim, 1996, O. striagatus Song, 1991, O. sushilae Tikader, 1965, Peucetia latikae Tikader, 1970), while P. formosensis Kishida, 1930 was listed as a dubious species. The results showed that using a COI genetic distance (K2P) threshold of 3% can effectively delineate most species. However, the boundaries between some species are ambiguous. Oxyopes sertatus and O. taiwanensis sp. nov., as well as Hamat. cordivulva sp. nov. and Hamat. foveata, have distinct morphological differences in genitalia, but methods such as ABGD, ASAP, bPTP, and GMYC cannot distinguish them as independent species. Conversely, T. parva sp. nov. has a genetic distance greater than 4% without clear morphological differentiation. Additionally, this study reconstructed the molecular phylogeny of the lynx spider using five genetic markers (12S rRNA, 18S rRNA, 28S rRNA, COI, and histone H3) and a dataset included six genera and 42 species. Phylogenetic trees reconstructed using maximum likelihood (ML) and Bayesian inference (BI) methods support three major clades within the Oxyopidae: (1) Peucetia and Tapinillus, (2) Oxyopes, and (3) Hamadruas, Hamataliwa, and Tapponia. All genera except Tapponia are monophyletic. The relationship between Hamataliwa and Tapponia and their generic definitions require further clarification. Through geometric morphometric analysis of carapace shape indicated significant differences in carapace shape between different sexes and genera, with phylogenetic signals is presented. The analysis also explored the correlation between carapace shape variation and leg morphology with the mobile lifestyle of lynx spiders, suggesting that Oxyopidae may have originated from more mobile ancestors, characterized by wider thoracic region of carapaces and relatively longer legs, and subsequent evolution led to sedentary lifestyles, with less pronounced thoracic region and relatively shorter legs.
    Oxyopes sertatus, widely distributed in low-elevation mountains, farmlands, and urban green spaces in Taiwan, is an ideal species to investigate the impact of urbanization on genetic diversity. Two hypotheses have been proposed: the urban fragmentation model predicts, which predicts urbanization acts as barrier to dispersal, and the urban facilitation model, which predicts urban habitats as corridors for urban adapters. I selected 17 sites with varying degrees of urbanization in Taichung and Nantou and quantified the urbanization level using land use composition within 4 km² (landscape scale) and 0.25 km² (local scale) grids. The genetic diversity, differentiation, and population structure were assessed using COI and Restriction site associated DNA sequencing (RAD-seq) data. The results indicated a trend of decreasing genetic diversity indices with increasing urbanization level, particularly a significant reduction in observed heterozygosity (Ho) at both scales and allelic richness (Ar) at the landscape scale, although nucleotide diversity was not affected. Additionally, average genetic differentiation (FST) among populations in urban region was significantly higher than in non-urban region. These findings support the urban fragmentation model, suggesting that limited and isolated natural habitats in the city lead to small populations, increased genetic drift, and loss of genetic diversity. Nevertheless, STRUCTURE and PCA analyses did not show population genetic structure, indicating substantial gene flow between urban and non-urban populations.
    In conclusion, this dissertation is the first comprehensive study of diversity and phylogenetic relationships of lynx spiders, highlighting the importance of morphological diagnostics and integrative methods for accurate species diversity assessment and the significance of carapace morphology as a phylogenetic character and its implications for evolutionary adaptation of lifestyle. Finally, this study emphasizes the urgent necessity of improving the quality and connectivity of nature habitats in cities to ensure the sustainability of wildlife and urban ecosystem services and functions.

    Chaper 1. General introduction 1 1.1 Introduction of lynx spiders 1 1.2 Studies of lynx spiders in Asia 1 1.3 Application of integrative species delimitation 2 1.4 Relationship of lynx spiders 3 1.5 Urbanization 3 1.6 Research opportunities in Taiwan 4 1.7 Aims and organization of this study 5 Chaper 2. Integrative species delimitation of lynx spiders (Oxyopidae) in Taiwan 7 2.1 Abstract 7 2.2 Introduction 9 2.3 Materials and methods 11 2.3.1 Taxon sampling and morphological measurements 11 2.3.2 DNA extraction and sequencing 12 2.3.3 Phylogenetic inference 13 2.3.4 Species delimitation 14 2.4 Results 16 2.4.1 Morphological species 16 2.4.2 Barcoding gap 17 2.4.3 Molecular species delimitation 17 2.4.4 Phylogeny 18 2.5 Discussion 19 2.5.1 Species delimitation for Taiwanese lynx spiders 19 2.5.2 Implication of Phylogeny of Oxyopidae 25 2.6 Taxonomy 26 2.7 Tables 64 2.8 Figures 73 Chaper 3. The molecular phylogeny of lynx spiders 114 3.1 Abstract 114 3.2 Introduction 115 3.3 Materials and methods 117 3.3.1 Taxon sampling 117 3.3.2 Phylogeny 118 3.3.3 Geometric Morphometrics analysis 119 3.3.4 Ancestral state reconstruction 120 3.4 Results 121 3.4.1 Phylogeny 121 3.4.2 Carapace shape variation 121 3.4.3 Ancestral state reconstruction 123 3.5 Discussion 124 3.5.1 Implications to higher level Oxyopidae systematics 124 3.5.2 Correlation of carapace shape, leg morphology and lifestyle 127 3.6 Conclusion and perspectives 129 3.6 Tables 131 3.7 Figures 139 Chaper 4. The effect of urbanization on genetic variation of lynx spiders 147 4.1 Abstract 147 4.2 Introduction 149 4.3 Materials and methods 152 4.3.1 Sampling 152 4.3.2 Landscape measurement and urbanization intensity 153 4.3.3 DNA extraction and SNP calling 153 4.3.4 Data analysis 154 4.4 Results 156 4.4.1 Land use and urbanization score 156 4.4.2 Genetic diversity 157 4.4.3 Genetic differentiation 158 4.4.4 Population structure 158 4.4.5 Migration models 159 4.4.6 Body size 159 4.5 Discussion 160 4.5.1 Genetic diversity and differentiation 161 4.5.2 Population structure 162 4.5.3 Implication for management 164 4.6 Conclusion and perspectives 167 4.7 Tables 169 4.8 Figures 180 Chaper 5. General conclusion 196 5.1 Summary of findings 196 5.2 Limitations and future directions 197 Reference 199 Appendix 240

    Adams, D.C. (2014) A generalized K statistic for estimating phylogenetic signal from shape and other high-dimensional multivariate data. Systematic Biology 63, 685–697. https://doi.org/10.1093/sysbio/syu030
    Adams, D.C. & Otárola-Castillo, E. (2013) geomorph: an R package for the collection and analysis of geometric morphometric shape data. Methods in Ecology and Evolution 4, 393–399. https://doi.org/10.1111/2041-210X.12035
    Adams, D.C., Rohlf, F.J. & Slice, D.E. (2013) A field comes of age: geometric morphometrics in the 21st century. Hystrix, the Italian Journal of Mammalogy 24, 7–14. https://doi.org/10.4404/hystrix-24.1-6283
    Agnarsson, I., LeQuier, S.M., Kuntner, M., Cheng, R.-C., Coddington, J.A. & Binford, G. (2016) Phylogeography of a good Caribbean disperser: Argiope argentata (Araneae, Araneidae) and a new “cryptic” species from Cuba. ZooKeys 625, 25–44. https://doi.org/10.3897/zookeys.625.8729
    Ahrens, D., Ahyong, S.T., Ballerio, A., Barclay, M.V.L., Eberle, J., Espeland, M., Huber, B.A., Mengual, X., Pacheco, T.L., Peters, R.S., Rulik, B., Vaz-De-Mello, F., Wesener, T. & Krell, F.-T. (2021) Is it time to describe new species without diagnoses?—A comment on Sharkey et al. (2021). Zootaxa 5027, 151–159. https://doi.org/10.11646/zootaxa.5027.2.1
    Alberti, M. (2015) Eco-evolutionary dynamics in an urbanizing planet. Trends in Ecology & Evolution 30, 114–126. https://doi.org/10.1016/j.tree.2014.11.007
    Albo, M.J., Bidegaray-Batista, L., Bechsgaard, J., Silva, E.L.C. da, Bilde, T. & Pérez-Miles, F. (2017) Molecular phylogenetic analyses show that Trechaleidae and Lycosidae are sister groups. Arachnology 17, 169–176. https://doi.org/10.13156/arac.2017.17.4.169
    Alvarez-Padilla, F. (2008) Higher level systematics of the spider family Tetragnathidae and revision of the genus Metabus (Araneae). Ph.D. Dissertation. The George Washington University.
    Aviles, L. (1994) Social behaviour in a web-building lynx spider, Tapinillus sp. (Araneae: Oxyopidae). Biological Journal of the Linnean Society 51, 163–176. https://doi.org/10.1111/j.1095-8312.1994.tb00985.x
    Baehr, B.C., Harms, D., Dupérré, N. & Raven, R. (2017) The Australian lynx spiders (Araneae, Oxyopidae, Oxyopes) of the Godeffroy Collection, including the description of a new species. Evolutionary Systematics 1, 11–37. https://doi.org/10.3897/evolsyst.1.14652
    Baken, E.K., Collyer, M.L., Kaliontzopoulou, A. & Adams, D.C. (2021) geomorph v4.0 and gmShiny: Enhanced analytics and a new graphical interface for a comprehensive morphometric experience. Methods in Ecology and Evolution 12, 2355–2363. https://doi.org/10.1111/2041-210X.13723
    Bardua, C., Felice, R.N., Watanabe, A., Fabre, A.-C. & Goswami, A. (2019) A practical guide to sliding and surface semilandmarks in morphometric analyses. Integrative Organismal Biology 1, obz016. https://doi.org/10.1093/iob/obz016
    Barley, A.J., Brown, J.M. & Thomson, R.C. (2018) Impact of model violations on the inference of species boundaries under the multispecies coalescent. Systematic Biology 67, 269–284. https://doi.org/10.1093/sysbio/syx073
    Barrett, R.D.H. & Hebert, P.D.N. (2005) Identifying spiders through DNA barcodes. Canadian Journal of Zoology 83, 481–491. https://doi.org/10.1139/z05-024
    Barrett, R.D.H. & Schluter, D. (2008) Adaptation from standing genetic variation. Trends in Ecology & Evolution 23, 38–44. https://doi.org/10.1016/j.tree.2007.09.008
    Barrion, A.T. & Litsinger, J.A. (1995) Riceland spiders of south and Southeast Asia. CAB International, Wallingford, UK, 700 pp.
    Barton, K. (2023) MuMIn : multi-model inference, R package version 1.47.5.
    Basnet, K. & Mukhopadhyay, A. (2014) Biocontrol potential of the lynx spider Oxyopes javanus (Araneae: Oxyopidae) against the tea mosquito bug, Helopeltis theivora (Heteroptera: Miridae). International Journal of Tropical Insect Science 34, 232–238. https://doi.org/10.1017/S1742758414000538
    Bayer, S. & Schönhofer, A.L. (2013) Phylogenetic relationships of the spider family Psechridae inferred from molecular data, with comments on the Lycosoidea (Arachnida : Araneae). Invertebrate Systematics 27, 53. https://doi.org/10.1071/IS12017
    Beerli, P. (2006) Comparison of Bayesian and maximum-likelihood inference of population genetic parameters. Bioinformatics 22, 341–345. https://doi.org/10.1093/bioinformatics/bti803
    Bennett, A.F. (2003) Linkages in the Landscape: The Role of Corridors and Connectivity in Wildlife Conservation. IUCN, Gland, Switzerland and Cambridge, UK, 254 pp.
    Berles, P., Wölfer, J., Alfieri, F., Botton-Divet, L., Guéry, J.-P. & Nyakatura, J.A. (2024) Linking morphology, performance, and habitat utilization: adaptation across biologically relevant “levels” in tamarins. BMC Ecology and Evolution 24, 22. https://doi.org/10.1186/s12862-023-02193-z
    Best, I. & Pei, K.J.-C. (2020) Factors influencing local attitudes towards the conservation of leopard cats Prionailurus bengalensis in rural Taiwan. Oryx 54, 866–872. https://doi.org/10.1017/S0030605318000984
    Black, C.R. & Berendzen, P.B. (2020) Shared ecological traits influence shape of the skeleton in flatfishes (Pleuronectiformes). PeerJ 8, e8919. https://doi.org/10.7717/peerj.8919
    Blagoev, G.A., deWaard, J.R., Ratnasingham, S., deWaard, S.L., Lu, L., Robertson, J., Telfer, A.C. & Hebert, P.D.N. (2016) Untangling taxonomy: a DNA barcode reference library for Canadian spiders. Molecular Ecology Resources 16, 325–341. https://doi.org/10.1111/1755-0998.12444
    Blomberg, S.P., Garland, T. & Ives, A.R. (2003) Testing for phylogenetic signal in comparative data: behavioral traits are more labile. Evolution 57, 717–745. https://doi.org/10.1111/j.0014-3820.2003.tb00285.x
    Blumenfeld, A.J., Eyer, P.-A., Helms, A.M., Buczkowski, G. & Vargo, E.L. (2022) Consistent signatures of urban adaptation in a native, urban invader ant Tapinoma sessile. Molecular Ecology 31, 4832–4850. https://doi.org/10.1111/mec.16188
    Bond, J.E. & Beamer, D.A. (2006) A morphometric analysis of mygalomorph spider carapace shape and its efficacy as a phylogenetic character (Araneae). Invertebrate Systematics 20, 1. https://doi.org/10.1071/IS05041
    Bookstein, F.L. (1991) Morphometric Tools for Landmark Data: Geometry and Biology. Cambridge University Press, Cambrige, 459 pp.
    Bösenberg, W. & Strand, E. (1906) Japanische Spinnen. Abhandlungen der Senckenbergischen Naturforschenden Gesellschaft 30, 93–422.
    Bouckaert, R., Heled, J., Kühnert, D., Vaughan, T., Wu, C.-H., Xie, D., Suchard, M.A., Rambaut, A. & Drummond, A.J. (2014) BEAST 2: A Software Platform for Bayesian Evolutionary Analysis. PLoS Computational Biology 10, e1003537. https://doi.org/10.1371/journal.pcbi.1003537
    Bougeard, S. & Dray, S. (2018) Supervised Multiblock Analysis in R with the ade4 Package. Journal of Statistical Software 86, 1–17. https://doi.org/10.18637/jss.v086.i01
    Brady, A.R. (1964) The lynx spiders of North America, north of Mexico (Araneae: Oxyopidae). Bulletin of the Museum of Comparative Zoology at Harvard College 131, 429–518.
    Brady, A.R. (1970) lynx spider genus Hamataliwa in Mexico and Central America (Araneae: Oxyopidae). Harvard Univ Mus Compar Zool Bull 140, 75–125.
    Brady, A.R. & Santos, A.J. (2005) Oxyopidae. In: Spiders of North America: An Identification Manual. American Arachnological Society, Keene (New Hampshire), pp. 189–191.
    Brandt, S., Sole, C. & Lyle, R. (2023a) The phylogenetic structure and coalescent species delimitation of an endemic trapdoor spider genus, Stasimopus (Araneae, Mygalomorphae, Stasimopidae) in the Karoo region of South Africa. Molecular Phylogenetics and Evolution 184, 107798. https://doi.org/10.1016/j.ympev.2023.107798
    Brandt, S., Sole, C., Lyle, R. & Pirk, C. (2023b) Geometric morphometric analysis of ocular patterns as a species identifier in the South African endemic trapdoor spider Genus Stasimopus Simon, 1892 (Araneae, Mygalomorphae, Stasimopidae). Evolutionary Biology 50, 350–364. https://doi.org/10.1007/s11692-023-09609-0
    Brandt, Y. & Andrade, M.C.B. (2007) Testing the gravity hypothesis of sexual size dimorphism: are small males faster climbers? Functional Ecology 21, 379–385. https://doi.org/10.1111/j.1365-2435.2007.01243.x
    Brasil, S.N.R., George, M. & Rehan, S.M. (2023) Functional traits of wild bees in response to urbanization. Journal of Insect Conservation. https://doi.org/10.1007/s10841-023-00528-1
    Brav-Cubitt, T., Leschen, R., Veale, A. & Buckley, T. (2022) Genetic diversity and differentiation in the leaf litter weevil Geochus politus across an urban-rural gradient. New Zealand Journal of Ecology. https://doi.org/10.20417/nzjecol.46.6
    Brewer, V.N., Lane, S.J., Sewall, K.B. & Mabry, K.E. (2020) Effects of low-density urbanization on genetic structure in the Song Sparrow. PLOS ONE 15, e0234008. https://doi.org/10.1371/journal.pone.0234008
    Brown, S.D.J., Collins, R.A., Boyer, S., Lefort, M.-C., Malumbres-Olarte, J., Vink, C.J. & Cruickshank, R.H. (2012) SPIDER : An R package for the analysis of species identity and evolution, with particular reference to DNA barcoding. Molecular Ecology Resources 12, 562–565. https://doi.org/10.1111/j.1755-0998.2011.03108.x
    Bryant, E.B. (1948) The spiders of Hispaniola. Bulletin of the Museum of Comparative Zoology 100, 329–447.
    Bryant, G.L., Kobryn, H.T., Hardy, G.E.StJ. & Fleming, P.A. (2017) Habitat islands in a sea of urbanisation. Urban Forestry & Urban Greening 28, 131–137. https://doi.org/10.1016/j.ufug.2017.10.016
    Caizergues, A.E., Santangelo, J.S., Ness, R.W., Angeoletto, F., Anstett, D.N., Anstett, J., Baena‐Diaz, F., Carlen, E.J., Chaves, J.A., Comerford, M.S., Dyson, K., Falahati‐Anbaran, M., Fellowes, M.D.E., Hodgins, K.A., Hood, G.R., Iñiguez‐Armijos, C., Kooyers, N.J., Lázaro‐Lobo, A., Moles, A.T., Munshi‐South, J., Paule, J., Porth, I.M., Santiago‐Rosario, L.Y., Whitney, K.S., Tack, A.J.M. & Johnson, M.T.J. (2024) Does urbanisation lead to parallel demographic shifts across the world in a cosmopolitan plant? Molecular Ecology 33, e17311. https://doi.org/10.1111/mec.17311
    Čandek, K. & Kuntner, M. (2015) DNA barcoding gap: reliable species identification over morphological and geographical scales. Molecular Ecology Resources 15, 268–277. https://doi.org/10.1111/1755-0998.12304
    Cao, X., Liu, J., Chen, J., Zheng, G., Kuntner, M. & Agnarsson, I. (2016) Rapid dissemination of taxonomic discoveries based on DNA barcoding and morphology. Scientific Reports 6, 37066. https://doi.org/10.1038/srep37066
    Carstens, B.C., Pelletier, T.A., Reid, N.M. & Satler, J.D. (2013) How to fail at species delimitation. Molecular Ecology 22, 4369–4383. https://doi.org/10.1111/mec.12413
    Ceccarelli, F.S., Sharkey, M.J. & Zaldívar-Riverón, A. (2012) Species identification in the taxonomically neglected, highly diverse, neotropical parasitoid wasp genus Notiospathius (Braconidae: Doryctinae) based on an integrative molecular and morphological approach. Molecular Phylogenetics and Evolution 62, 485–495. https://doi.org/10.1016/j.ympev.2011.10.018
    Central Weather Bureau (2023) Monthly Report on Climate System (Mar 2023). Central Weather Bureau, Ministry of Transportation and Communications, Taipei.
    Cerântola, N. de C.M., Oi, C.A., Cervini, M. & Del Lama, M.A. (2011) Genetic differentiation of urban populations of Euglossa cordata from the state of São Paulo, Brazil. Apidologie 42, 214–222.
    Chamberlin, R.V. (1924) Descriptions of new American and Chinese spiders, with notes on other Chinese species. Proceedings of the United States National Museum 63, 1–38. https://doi.org/10.5479/si.00963801.63-2481.1
    Chan, K.O. & Grismer, L.L. (2019) To split or not to split? Multilocus phylogeny and molecular species delimitation of southeast Asian toads (family: Bufonidae). BMC Evolutionary Biology 19, 95. https://doi.org/10.1186/s12862-019-1422-3
    Chapple, D.G. & Ritchie, P.A. (2013) A retrospective approach to testing the DNA barcoding method. PLOS ONE 8, e77882. https://doi.org/10.1371/journal.pone.0077882
    Chen, C.-C. (2013) A taxonomic study on the spiders of Plexippoida (Araneae: Salticidae) of Taiwan. Master Thesis. Department of Life Science, National Taiwan Normal University, 205pp.
    Chen, G., Li, X., Liu, X., Chen, Y., Liang, X., Leng, J., Xu, X., Liao, W., Qiu, Y., Wu, Q. & Huang, K. (2020) Global projections of future urban land expansion under shared socioeconomic pathways. Nature Communications 11, 537. https://doi.org/10.1038/s41467-020-14386-x
    Chen, M.-T., Liang, Y.-J., Kuo, C.-C. & Pei, K.J.-C. (2016) Home ranges, movements and activity patterns of leopard cats (Prionailurus bengalensis) and threats to them in Taiwan. Mammal Study 41, 77–86. https://doi.org/10.3106/041.041.0205
    Chen, P.-H. (2007) Population genetic structure of red-bellied tree squirrel (Callosciurus erythraeus) in agricultural landscapes. The Department of Life Sciences of Tunghai University.
    Chen, S., Liu, Y., Patrick, S.C., Goodale, E., Safran, R.J. & Pagani‐Núñez, E. (2023a) A multidimensional framework to quantify the effects of urbanization on avian breeding fitness. Ecology and Evolution 13, e10259. https://doi.org/10.1002/ece3.10259
    Chen, S.-H. & Huang, W.-C. (2012) The spider fauna of Taiwan: Araneae. Miturgidae, Anyphaenidae, Clubionidae. National Taiwan Normal University, Taipei, 136 pp.
    Chen, W.-J., Tsai, F.-A., Lin, Y.-L. & Lin, T.-E. (2023b) How modes of transportation influence road carcass detection probability. Taiwan Journal of Biodiversity 25, 31–59.
    Chen, X.E. & Gao, J.C. (1990) The Sichuan farmland spiders in China. Sichuan Science and Technology Publishing House, Chengdu, 266 pp.
    Chen, Y.-Y., Huang, W., Wang, W.-H., Juang, J.-Y., Hong, J.-S., Kato, T. & Luyssaert, S. (2019) Reconstructing Taiwan’s land cover changes between 1904 and 2015 from historical maps and satellite images. Scientific Reports 9, 3643. https://doi.org/10.1038/s41598-019-40063-1
    Cheng, D.-Q. & Piel, William.H. (2018) The origins of the Psechridae: Web-building lycosoid spiders. Molecular Phylogenetics and Evolution 125, 213–219. https://doi.org/10.1016/j.ympev.2018.03.035
    Cheng, F., Zhao, S., Schmidt, B.V., Ye, L., Hallerman, E.M. & Xie, S. (2018) Morphological but no genetic differentiation among fragmented populations of Hemiculter leucisculus (Actinopterygii, Cyprinidae) from a lake complex in the middle Yangtze, China. Hydrobiologia 809, 185–200. https://doi.org/10.1007/s10750-017-3464-0
    Chou, C.-H. & Tang, H.-Y. (2016) Conservation of biodiversity in Taiwan. Botanica Orientalis: Journal of Plant Science 10, 1–5. https://doi.org/10.3126/botor.v10i0.21016
    Chu, Y.-I. & Okuma, C. (1970) Preliminary survey on the spider-fauna of the paddy fields in Taiwan. Mushi 44, 65–88.
    Chuang, M.-S. (2020) Multi-temporal land use land cover change and urban heat island effect analysis in Taichung. Master Thesis. National Taiwan Normal University.
    Chung, C.-L. (2021) A taxonomic study on the family Pholcidae (Arachnida: Araneae) from Taiwan. Master Thesis. Department of Biomedical Science, Da-Yeh University, 112pp.
    Chung, L.-H. (2011) A taxonomic study on the family Uloboridae (Arachnida: Araneae) of Taiwan. Master Thesis. Department of Life Science, National Taiwan Normal University, 213pp.
    Chyn, K., Lin, T.-E., Chen, Y.-K., Chen, C.-Y. & Fitzgerald, L.A. (2019) The magnitude of roadkill in Taiwan: Patterns and consequences revealed by citizen science. Biological Conservation 237, 317–326. https://doi.org/10.1016/j.biocon.2019.07.014
    Colgan, D.J., McLauchlan, A., Wilson, G.D.F., Livingston, S.P., Edgecombe, G.D., Macaranas, J., Cassis, G. & Gray, M.R. (1998) Histone H3 and U2 snRNA DNA sequences and arthropod molecular evolution. Australian Journal of Zoology 46, 419. https://doi.org/10.1071/ZO98048
    Collevatti, R.G., Vitorino, L.C., Vieira, T.B., Oprea, M. & Telles, M.P.C. (2020) Landscape changes decrease genetic diversity in the Pallas’ long-tongued bat. Perspectives in Ecology and Conservation 18, 169–177. https://doi.org/10.1016/j.pecon.2020.06.006
    Collyer, M.L. & Adams, D.C. (2018) RRPP: An R package for fitting linear models to high‐dimensional data using residual randomization. Methods in Ecology and Evolution 9, 1772–1779. https://doi.org/10.1111/2041-210X.13029
    Cracraft, J. (1983) Species concepts and speciation analysis. In: R. F. Johnston (Ed), Current Ornithology. Springer US, New York, NY, pp. 159–187.
    Crews, S. & Harvey, M. (2011) The spider family Selenopidae (Arachnida,Araneae) in Australasia and the Oriental Region. ZooKeys 99, 1–103. https://doi.org/10.3897/zookeys.99.723
    Cronin, A.D., Smit, J.A.H. & Halfwerk, W. (2022) Anthropogenic noise and light alter temporal but not spatial breeding behavior in a wild frog. Behavioral Ecology 33, 1115–1122. https://doi.org/10.1093/beheco/arac077
    Da Silva, T.F., Sampaio, I., Angulo, A., Domínguez-Domínguez, O., Andrade-Santos, J., Guimarães-Costa, A. & Santos, S. (2023) Species delimitation by DNA barcoding reveals undescribed diversity in Stelliferinae (Sciaenidae). PLOS ONE 18, e0296335. https://doi.org/10.1371/journal.pone.0296335
    Dang, N.-X., Sun, F.-H., Lv, Y.-Y., Zhao, B.-H., Wang, J.-C., Murphy, R.W., Wang, W.-Z. & Li, J.-T. (2016) DNA barcoding and the identification of tree frogs (Amphibia: Anura: Rhacophoridae). Mitochondrial DNA Part A 27, 2574–2584. https://doi.org/10.3109/19401736.2015.1041113
    Dayrat, B. (2005) Towards integrative taxonomy. Biological Journal of the Linnean Society 85, 407–415. https://doi.org/10.1111/j.1095-8312.2005.00503.x
    Deeleman-Reinhold, C.L. (2004) On the taxonomic relations of lynx spiders from the canopy of a tropical Asian rainforest (Araneae: Oxyopidae). In: Arthropoda Selecta. European Arachnology 2003, pp. 41–52.
    Deeleman-Reinhold, C.L. (2009) Description of the lynx spiders of a canopy fogging project in northern Borneo (Araneae: Oxyopidae), with description of a new genus and six new species of Hamataliwa. Zoologische Mededelingen 83, 673–700.
    Diamond, S.E., Prileson, E.G. & Martin, R.A. (2022) Adaptation to urban environments. Current Opinion in Insect Science 51, 100893. https://doi.org/10.1016/j.cois.2022.100893
    Ditchkoff, S.S., Saalfeld, S.T. & Gibson, C.J. (2006) Animal behavior in urban ecosystems: Modifications due to human-induced stress. Urban Ecosystems 9, 5–12. https://doi.org/10.1007/s11252-006-3262-3
    Domènech, M., Crespo, L.C., Enguídanos, A. & Arnedo, M.A. (2020) Mitochondrial discordance in closely related Theridion spiders (Araneae, Theridiidae), with description of a new species of the T. melanurum group. Zoosystematics and Evolution 96, 159–173. https://doi.org/10.3897/zse.96.49946
    Dowton, M., Meiklejohn, K., Cameron, S.L. & Wallman, J. (2014) A Preliminary Framework for DNA Barcoding, Incorporating the Multispecies Coalescent. Systematic Biology 63, 639–644. https://doi.org/10.1093/sysbio/syu028
    Dray, S. & Dufour, A.-B. (2007) The ade4 package: Implementing the duality diagram for ecologists. Journal of Statistical Software 22, 1–20. https://doi.org/10.18637/jss.v022.i04
    Drummond, A.J. & Rambaut, A. (2007) BEAST: Bayesian evolutionary analysis by sampling trees. BMC Evolutionary Biology 7, 214. https://doi.org/10.1186/1471-2148-7-214
    Duncan, R.P., Rynerson, M.R., Ribera, C. & Binford, G.J. (2010) Diversity of Loxosceles spiders in Northwestern Africa and molecular support for cryptic species in the Loxosceles rufescens lineage. Molecular Phylogenetics and Evolution 55, 234–248. https://doi.org/10.1016/j.ympev.2009.11.026
    Eaton, D.A.R. & Overcast, I. (2020) ipyrad: Interactive assembly and analysis of RADseq datasets. Bioinformatics 36, 2592–2594. https://doi.org/10.1093/bioinformatics/btz966
    Esselstyn, J.A., Evans, B.J., Sedlock, J.L., Anwarali Khan, F.A. & Heaney, L.R. (2012) Single-locus species delimitation: a test of the mixed Yule–coalescent model, with an empirical application to Philippine round-leaf bats. Proceedings of the Royal Society B: Biological Sciences 279, 3678–3686. https://doi.org/10.1098/rspb.2012.0705
    Evans, K.L., Gaston, K.J., Frantz, A.C., Simeoni, M., Sharp, S.P., McGowan, A., Dawson, D.A., Walasz, K., Partecke, J., Burke, T. & Hatchwell, B.J. (2009) Independent colonization of multiple urban centres by a formerly forest specialist bird species. Proceedings of the Royal Society B: Biological Sciences 276, 2403–2410. https://doi.org/10.1098/rspb.2008.1712
    Ezard, T., Fujisawa, T. & Barraclough, T.G. (2021) splits: SPecies’ LImits by Threshold Statistics. R package version 1.0-20/r56. Available from: https://R-Forge.R-project.org/projects/splits/
    Fernández, R., Kallal, R.J., Dimitrov, D., Ballesteros, J.A., Arnedo, M.A., Giribet, G. & Hormiga, G. (2018) Phylogenomics, diversification dynamics, and comparative transcriptomics across the spider tree of life. Current Biology 28, 1489-1497.e5. https://doi.org/10.1016/j.cub.2018.03.064
    Fernández-Montraveta, C. & Marugán-Lobón, J. (2017) Geometric morphometrics reveals sex-differential shape allometry in a spider. PeerJ 5, e3617. https://doi.org/10.7717/peerj.3617
    Fink, L.S. (1987) Green lynx spider egg sacs: Sources of mortality and the function of female guarding (Araneae, Oxyopidae). The Journal of Arachnology 15, 231–239.
    Flouri, T., Jiao, X., Rannala, B. & Yang, Z. (2018) Species tree inference with BPP using genomic sequences and the multispecies coalescent. Molecular Biology and Evolution 35, 2585–2593. https://doi.org/10.1093/molbev/msy147
    Foellmer, M.W., Marson, M. & Moya-Laraño, J. (2011) Running performance as a function of body size, leg length, and angle of incline in male orb-web spiders, Argiope aurantia. Evolutionary Ecology Research 13, 513–526.
    Folmer, O., Black, M., Hoeh, W., Lutz, R. & Vrijenhoek, R. (1994) DNA primers for amplification of mitochondrial cytochrome c oxidase subunit I from diverse metazoan invertebrates. Molecular Marine biology and biotechnology 3, 294–299.
    Fonseca-Ferreira, R., Morales, M.J.A., Carvalho, L.S. & Guadanucci, J.P.L. (2023) Morphometric analysis of a trapdoor spider (Araneae, Idiopidae) across different Brazilian biomes reveals the geographic variation of spiders from the Caatinga biome. Diversity 15, 861. https://doi.org/10.3390/d15070861
    Fowler‐Finn, K.D., Rosenthal, M.F. & Hebets, E.A. (2013) Locomotor performance varies with adult phenotype in ornamented/non‐ornamented wolf spiders. Ethology 119, 570–580. https://doi.org/10.1111/eth.12096
    Fox, J. & Weisberg, S. (2019) An R companion to applied regression. Third. Sage publications, Thousand Oaks. Available from: https://socialsciences.mcmaster.ca/jfox/Books/Companion/
    Freudenstein, J.V., Broe, M.B., Folk, R.A. & Sinn, B.T. (2016) Biodiversity and the species concept—lineages are not enough. Systematic Biology 66, 644–656. https://doi.org/10.1093/sysbio/syw098
    Fujisawa, T. & Barraclough, T.G. (2013) Delimiting species using single-locus data and the Generalized Mixed Yule Coalescent approach: a revised method and evaluation on simulated data sets. Systematic Biology 62, 707–724. https://doi.org/10.1093/sysbio/syt033
    Fujita, M.K., Leaché, A.D., Burbrink, F.T., McGuire, J.A. & Moritz, C. (2012) Coalescent-based species delimitation in an integrative taxonomy. Trends in Ecology & Evolution 27, 480–488. https://doi.org/10.1016/j.tree.2012.04.012
    Fusco, N.A., Pehek, E. & Munshi‐South, J. (2021) Urbanization reduces gene flow but not genetic diversity of stream salamander populations in the New York City metropolitan area. Evolutionary Applications 14, 99–116. https://doi.org/10.1111/eva.13025
    Gajbe, U.A. (1999) Studies on some spiders of the family Oxyopidae (Araneae: Arachnida) from India. Records of the Zoological Survey of India 97, 31–79.
    Gajbe, U.A. (2008) Spider (Arachnida: Araneae: Oxyopidae). Zoological Survey of India 3, 1–117.
    Galimberti, A., Spada, M., Russo, D., Mucedda, M., Agnelli, P., Crottini, A., Ferri, E., Martinoli, A. & Casiraghi, M. (2012) Integrated operational taxonomic units (IOTUs) in echolocating bats: a bridge between molecular and traditional taxonomy. PLoS ONE 7, e40122. https://doi.org/10.1371/journal.pone.0040122
    Gámez, S. & Harris, N.C. (2021) Living in the concrete jungle: carnivore spatial ecology in urban parks. Ecological Applications 31, e02393. https://doi.org/10.1002/eap.2393
    Gao, J. & O’Neill, B.C. (2020) Mapping global urban land for the 21st century with data-driven simulations and Shared Socioeconomic Pathways. Nature Communications 11, 2302. https://doi.org/10.1038/s41467-020-15788-7
    Garrison, N.L., Rodriguez, J., Agnarsson, I., Coddington, J.A., Griswold, C.E., Hamilton, C.A., Hedin, M., Kocot, K.M., Ledford, J.M. & Bond, J.E. (2016) Spider phylogenomics: untangling the Spider Tree of Life. PeerJ 4, e1719. https://doi.org/10.7717/peerj.1719
    Ge, Y., Xia, C., Wang, J., Zhang, X., Ma, X. & Zhou, Q. (2021) The efficacy of DNA barcoding in the classification, genetic differentiation, and biodiversity assessment of benthic macroinvertebrates. Ecology and Evolution 11, 5669–5681. https://doi.org/10.1002/ece3.7470
    Giraudeau, M., Mousel, M., Earl, S. & McGraw, K. (2014) Parasites in the city: degree of urbanization predicts poxvirus and coccidian infections in house finches (Haemorhous mexicanus). PLoS ONE 9, e86747. https://doi.org/10.1371/journal.pone.0086747
    Giribet, G., Carranza, S., Baguna, J., Riutort, M. & Ribera, C. (1996) First molecular evidence for the existence of a Tardigrada + Arthropoda clade. Molecular Biology and Evolution 13, 76–84. https://doi.org/10.1093/oxfordjournals.molbev.a025573
    Gomes, V., Carretero, M.A. & Kaliontzopoulou, A. (2016) The relevance of morphology for habitat use and locomotion in two species of wall lizards. Acta Oecologica 70, 87–95. https://doi.org/10.1016/j.actao.2015.12.005
    Gortat, T., Rutkowski, R., Gryczynska, A., Kozakiewicz, A. & Kozakiewicz, M. (2017) The spatial genetic structure of the yellow-necked mouse in an urban environment – a recent invader vs. a closely related permanent inhabitant. Urban Ecosystems 20, 581–594. https://doi.org/10.1007/s11252-016-0620-7
    Gostel, M.R. & Kress, W.J. (2022) The expanding role of DNA barcodes: Indispensable tools for ecology, evolution, and conservation. Diversity 14, 213. https://doi.org/10.3390/d14030213
    Goudet, J. & Jombart, T. (2015) hierfstat: estimation and tests of hierarchical F-statistics. R package version 0.5-11. Available from: https://CRAN.R-project.org/package=hierfstat
    Goulpeau, A., Penel, B., Maggia, M.-E., Marchán, D.F., Steinke, D., Hedde, M. & Decaëns, T. (2022) OTU delimitation with earthworm DNA barcodes: a comparison of methods. Diversity 14, 866. https://doi.org/10.3390/d14100866
    Gouvêa, J. & Gil-Azevedo, L.H. (2022) Geometric morphometrics as a tool to understand biogeographical and evolutionary patterns in crane fly genus Ischnotoma Skuse (Diptera, Tipulidae). PeerJ 10, e13123. https://doi.org/10.7717/peerj.13123
    Grimm, N.B., Faeth, S.H., Golubiewski, N.E., Redman, C.L., Wu, J., Bai, X. & Briggs, J.M. (2008) Global change and the ecology of cities. Science 319, 756–760. https://doi.org/10.1126/science.1150195
    Grimshaw, J.F. (1989) The genus Hamataliwa Keyserling (Araneae: Oxyopidae) in Australia with description of two new species. Australian Journal of Entomology 28, 181–186. https://doi.org/10.1111/j.1440-6055.1989.tb00877.x
    Griswold, C.E. (1983) Tapinillus longipes (Taczanowski), a web-building lynx spider from the American tropics (Araneae: Oxyopidae). Journal of Natural History 17, 979–985. https://doi.org/10.1080/00222938300770751
    Griswold, C.E. (1993) Investigations into the phylogeny of the Lycosoid spiders and their kin (Arachnida: Araneae, Lycosoidea). Smithsonian Contributions to Zoology, 1–39. https://doi.org/10.5479/si.00810282.539
    Grossi, B. & Canals, M. (2015) Energetics, scaling and sexual size dimorphism of spiders. Acta Biotheoretica 63, 71–81. https://doi.org/10.1007/s10441-014-9237-5
    Guenat, S. & Dallimer, M. (2023) A global meta-analysis reveals contrasting impacts of air, light, and noise pollution on pollination. Ecology and Evolution 13, e9990. https://doi.org/10.1002/ece3.9990
    Gunz, P. & Mitteroecker, P. (2013) Semilandmarks: a method for quantifying curves and surfaces. Hystrix, the Italian Journal of Mammalogy 24, 103–109. https://doi.org/10.4404/hystrix-24.1-6292
    Haase, D., Larondelle, N., Andersson, E., Artmann, M., Borgström, S., Breuste, J., Gomez-Baggethun, E., Gren, Å., Hamstead, Z., Hansen, R., Kabisch, N., Kremer, P., Langemeyer, J., Rall, E.L., McPhearson, T., Pauleit, S., Qureshi, S., Schwarz, N., Voigt, A., Wurster, D. & Elmqvist, T. (2014) A quantitative review of urban ecosystem service assessments: concepts, models, and implementation. AMBIO 43, 413–433. https://doi.org/10.1007/s13280-014-0504-0
    Habrich, A.K., Lawrence, E.R. & Fraser, D.J. (2021) Varying genetic imprints of road networks and human density in North American mammal populations. Evolutionary Applications, eva.13232. https://doi.org/10.1111/eva.13232
    Halfwerk, W., Blaas, M., Kramer, L., Hijner, N., Trillo, P.A., Bernal, X.E., Page, R.A., Goutte, S., Ryan, M.J. & Ellers, J. (2019) Adaptive changes in sexual signalling in response to urbanization. Nature Ecology & Evolution 3, 374–380. https://doi.org/10.1038/s41559-018-0751-8
    Hamilton, C.A., Formanowicz, D.R. & Bond, J.E. (2011) Species delimitation and phylogeography of Aphonopelma hentzi (Araneae, Mygalomorphae, Theraphosidae): cryptic diversity in North American tarantulas. PLoS ONE 6, e26207. https://doi.org/10.1371/journal.pone.0026207
    Hamilton, C.A., Hendrixson, B.E., Brewer, M.S. & Bond, J.E. (2014) An evaluation of sampling effects on multiple DNA barcoding methods leads to an integrative approach for delimiting species: A case study of the North American tarantula genus Aphonopelma (Araneae, Mygalomorphae, Theraphosidae). Molecular Phylogenetics and Evolution 71, 79–93. https://doi.org/10.1016/j.ympev.2013.11.007
    Hanberry, B.B. (2023) Urban land expansion and decreased urban sprawl at global, national, and city scales during 2000 to 2020. Ecosystem Health and Sustainability 9, 0074. https://doi.org/10.34133/ehs.0074
    Harris, S.E. & Munshi‐South, J. (2017) Signatures of positive selection and local adaptation to urbanization in white‐footed mice (Peromyscus leucopus). Molecular Ecology 26, 6336–6350. https://doi.org/10.1111/mec.14369
    Haugen, H., Dervo, B.K., Østbye, K., Heggenes, J., Devineau, O. & Linløkken, A. (2024) Genetic diversity, gene flow, and landscape resistance in a pond‐breeding amphibian in agricultural and natural forested landscapes in Norway. Evolutionary Applications 17, e13633. https://doi.org/10.1111/eva.13633
    Hazzi, N.A. & Hormiga, G. (2022) Molecular phylogeny of the tropical wandering spiders (Araneae, Ctenidae) and the evolution of eye conformation in the RTA clade. Cladistics, cla.12518. https://doi.org/10.1111/cla.12518
    Hebert, P.D.N., Cywinska, A., Ball, S.L. & deWaard, J.R. (2003) Biological identifications through DNA barcodes. Proceedings of the Royal Society B 270, 313–321. https://doi.org/10.1098/rspb.2002.2218
    Hebert, P.D.N., Stoeckle, M.Y., Zemlak, T.S. & Francis, C.M. (2004) Identification of birds through DNA barcodes. PLOS Biology 2, e312. https://doi.org/10.1371/journal.pbio.0020312
    Hedin, M.C. & Maddison, W.P. (2001) A combined molecular approach to phylogeny of the jumping spider subfamily Dendryphantinae (Araneae: Salticidae). Molecular Phylogenetics and Evolution 18, 386–403. https://doi.org/10.1006/mpev.2000.0883
    Hime, P.M., Hotaling, S., Grewelle, R.E., O’Neill, E.M., Voss, S.R., Shaffer, H.B. & Weisrock, D.W. (2016) The influence of locus number and information content on species delimitation: an empirical test case in an endangered Mexican salamander. Molecular Ecology 25, 5959–5974. https://doi.org/10.1111/mec.13883
    Ho, C.-W., Chou, T.-Y. & Yang, L.-S. (2011) The study of Taichung area land use change on heat island effect. Journal of Photogrammetry and Remote Sensing 16, 139–149.
    van’t Hof, A.E., Edmonds, N., Dalíková, M., Marec, F. & Saccheri, I.J. (2011) Industrial melanism in British peppered moths has a singular and recent mutational origin. Science 332, 958–960. https://doi.org/10.1126/science.1203043
    Hoffmann, A.A., Sgrò, C.M. & Kristensen, T.N. (2017) Revisiting adaptive potential, population size, and conservation. Trends in Ecology & Evolution 32, 506–517. https://doi.org/10.1016/j.tree.2017.03.012
    Hofmann, E.P., Nicholson, K.E., Luque-Montes, I.R., Köhler, G., Cerrato-Mendoza, C.A., Medina-Flores, M., Wilson, L.D. & Townsend, J.H. (2019) Cryptic diversity, but to what extent? Discordance between single-locus species delimitation methods within mainland anoles (Squamata: Dactyloidae) of northern central America. Frontiers in Genetics 10.
    Hong, Y., Yasuhara, M., Iwatani, H., Chao, A., Harnik, P.G. & Wei, C.-L. (2021) Ecosystem turnover in an urbanized subtropical seascape driven by climate and pollution. Anthropocene 36, 100304. https://doi.org/10.1016/j.ancene.2021.100304
    Hormiga, G. (2017) The discovery of the orb-weaving spider genus Pinkfloydia (Araneae, Tetragnathidae) in eastern Australia with description of a new species from New South Wales and comments on the phylogeny of Nanometinae. Zootaxa 4311, 480. https://doi.org/10.11646/zootaxa.4311.4.2
    Hsiao, S.-T., Chuang, S.-C., Chen, K.-S., Ho, P.-H., Wu, C.-L. & Chen, C.A. (2016) DNA barcoding reveals that the common cupped oyster in Taiwan is the Portuguese oyster Crassostrea angulata (Ostreoida; Ostreidae), not C. gigas. Scientific Reports 6, 34057. https://doi.org/10.1038/srep34057
    Hu, C.-C., Wu, Y.-Q., Ma, L., Chen, Y.-J. & Ji, X. (2019) Genetic and morphological divergence among three closely related Phrynocephalus species (Agamidae). BMC Evolutionary Biology 19, 114. https://doi.org/10.1186/s12862-019-1443-y
    Hu, Y., Liu, M. & Li, F. (1985) A description of the Oxyopes sushilae Tikader, 1965 (Araneae, Oxyopidae). Journal of Hunan Normal University 1985, 28–31.
    Hu, Y.J. (1980) On some common species of the genus Oxyopes from China. Journal of Hunan Normal University, Natural Sciences 1980, 67–75.
    Hu, Y.J., Wang, H.Z. & Chen, X.O. (1987) Two new records of spiders of the genus Peucetia in China (Araneae, Oxyopidae). Journal of Hunan Normal University 10, 69–72.
    Hu, Y.J., Zhang, Y.J. & Li, F.J. (1983) New records of two species of lynx-spiders from China (Araneae: Oxyopidae). Journal of Hunan Teachers College 1983, 9–10.
    Hu, Y.J. & Zhang, Y.Q. (1984) A description to the male of Oxyopes sikkimensis Tikader 1970 (Araneae: Oxyopidae). Journal of Hunan Normal University 4, 49–50.
    Huang, C.-Y. (2011) The taxonomic study of subfamily Thomisinae (Araneae: Thomisidae) of Taiwan. Department of Life Science, National Taiwan Normal University, 163pp.
    Huang, J.-P. (2020) Is population subdivision different from speciation? From phylogeography to species delimitation. Ecology and Evolution 10, 6890–6896. https://doi.org/10.1002/ece3.6524
    Huang, P.-S., Tsai, S.-M., Lin, H.-C. & Tso, I.-M. (2015) Do biotope area factor values reflect ecological effectiveness of urban landscapes? A case study on university campuses in central Taiwan. Landscape and Urban Planning 143, 143–149. https://doi.org/10.1016/j.landurbplan.2015.07.004
    Huber, B.A. & Dimitrov, D. (2014) Slow genital and genetic but rapid non-genital and ecological differentiation in a pair of spider species (Araneae, Pholcidae). Zoologischer Anzeiger 253, 394–403. https://doi.org/10.1016/j.jcz.2014.04.001
    Hubert, N., Hanner, R., Holm, E., Mandrak, N.E., Taylor, E., Burridge, M., Watkinson, D., Dumont, P., Curry, A., Bentzen, P., Zhang, J., April, J. & Bernatchez, L. (2008) Identifying Canadian freshwater fishes through DNA barcodes. PLoS ONE 3, e2490. https://doi.org/10.1371/journal.pone.0002490
    Humphrey, J.E., Haslem, A. & Bennett, A.F. (2023a) Avoid, adapt or exploit: Re-visiting bird responses to urbanization using a novel landscape approach. Global Ecology and Conservation 48, e02735. https://doi.org/10.1016/j.gecco.2023.e02735
    Humphrey, J.E., Haslem, A. & Bennett, A.F. (2023b) Housing or habitat: what drives patterns of avian species richness in urbanized landscapes? Landscape Ecology 38, 1919–1937. https://doi.org/10.1007/s10980-023-01666-2
    Hurst, J.A. & Rayor, L.S. (2021) Effects on running speed of changes in sexual size dimorphism at maturity on in the cursorial huntsman spider, Delena cancerides (Sparassidae). Journal of Comparative Physiology A 207, 269–277. https://doi.org/10.1007/s00359-021-01469-3
    Hurtado, G. & Mabry, K.E. (2019) Genetic structure of an abundant small mammal is influenced by low intensity urbanization. Conservation Genetics 20, 705–715. https://doi.org/10.1007/s10592-019-01163-7
    Jakobsson, M. & Rosenberg, N.A. (2007) CLUMPP: a cluster matching and permutation program for dealing with label switching and multimodality in analysis of population structure. Bioinformatics 23, 1801–1806. https://doi.org/10.1093/bioinformatics/btm233
    Jeon, J., Kim, H.C., Klein, T.A. & Choi, K.S. (2023) Analysis of geometric morphometrics and molecular phylogeny for Anopheles species in the Republic of Korea. Scientific Reports 13, 22009. https://doi.org/10.1038/s41598-023-49536-w
    Jin, Q., Hu, X.-M., Han, H.-L., Chen, F., Cai, W.-J., Ruan, Q.-Q., Liu, B., Luo, G.-J., Wang, H., Liu, X., Ward, R.D., Wu, C.-S., Wilson, J.-J. & Zhang, A.-B. (2018) A two-step DNA barcoding approach for delimiting moth species: moths of Dongling Mountain (Beijing, China) as a case study. Scientific Reports 8, 14256. https://doi.org/10.1038/s41598-018-32123-9
    Jocqué, R. & Dippenaar-Schoeman, A.S. (2006) Spider families of the world. Royal Museum for Central Africa, Tervuren, Belgium, 336 pp.
    Johnson, M.T.J. & Munshi-South, J. (2017) Evolution of life in urban environments. Science 358, eaam8327. https://doi.org/10.1126/science.aam8327
    Jombart, T., Devillard, S. & Balloux, F. (2010) Discriminant analysis of principal components: a new method for the analysis of genetically structured populations. BMC Genetics 11, 94. https://doi.org/10.1186/1471-2156-11-94
    Jump, A.S., Marchant, R. & Peñuelas, J. (2009) Environmental change and the option value of genetic diversity. Trends in Plant Science 14, 51–58. https://doi.org/10.1016/j.tplants.2008.10.002
    Kallal, R.J., Moore, A.J. & Hormiga, G. (2019) The shape of weaver: Investigating shape disparity in orb-weaving spiders (Araneae, Araneidae) using geometric morphometrics. Evolutionary Biology 46, 317–331. https://doi.org/10.1007/s11692-019-09482-w
    Kalyaanamoorthy, S., Minh, B.Q., Wong, T.K.F., von Haeseler, A. & Jermiin, L.S. (2017) ModelFinder: fast model selection for accurate phylogenetic estimates. Nature Methods 14, 587–589. https://doi.org/10.1038/nmeth.4285
    Kan, P.-L. (2018) A taxonomic study on the family Sparassidae (Arachnida: Araneae) of Taiwan. Master Thesis. Department of Life Science, National Taiwan Normal University, 265pp.
    Kaston, B.J. (1972) Web making by young Peucetia viridans (Hentz) (Araneae: Oxyopidae). Notes Arachnol. Southwest 3, 6–7.
    Katoh, K., Rozewicki, J. & Yamada, K.D. (2019) MAFFT online service: multiple sequence alignment, interactive sequence choice and visualization. Briefings in Bioinformatics 20, 1160–1166. https://doi.org/10.1093/bib/bbx108
    Katoh, K. & Standley, D.M. (2013) MAFFT multiple sequence alignment software version 7: improvements in performance and usability. Molecular Biology and Evolution 30, 772–780. https://doi.org/10.1093/molbev/mst010
    Kayashima, I. (1939) On the male of Peucetia formosensis Kishida (Oxyopidae). Transactions of the Natural History Society of Formosa 29, 36–38.
    Keck, F., Rimet, F., Bouchez, A. & Franc, A. (2016) phylosignal: an R package to measure, test, and explore the phylogenetic signal. Ecology and Evolution 6, 2774–2780. https://doi.org/10.1002/ece3.2051
    Kersch-Becker, M.F., Grisolia, B.B., Campos, M.J.O. & Romero, G.Q. (2018) The role of spider hunting mode on the strength of spider–plant mutualisms. Oecologia 188, 213–222. https://doi.org/10.1007/s00442-018-4170-y
    Kim, S., Lee, Y., Mutanen, M., Seung, J. & Lee, S. (2020) High functionality of DNA barcodes and revealed cases of cryptic diversity in Korean curved-horn moths (Lepidoptera: Gelechioidea). Scientific Reports 10, 6208. https://doi.org/10.1038/s41598-020-63385-x
    Kishida, K. (1930) A new Formosan oxyopid spider, Peucetia formosensis n. sp. Lansania 2, 145–150.
    Koch, L. (1878a) Die Arachniden Australiens nach der Natur beschrieben und abgebildet. Bauer & Raspe, Nürnberg, 969–1044 pp. Available from: http://www.biodiversitylibrary.org/bibliography/121660 (February 11, 2024)
    Koch, L. (1878b) Japanesische Arachniden und Myriapoden. Verhandlungen der zoologisch-botanischen Gesellschaft in Wien 27, 785–795.
    Koh, C.-N., Hsu, S.-H. & Chang, C. (2016) Breeding success of the Taiwan barbet (Psilopogon nuchalis) in natural and urban landscape. National Park Journal 26, 1–8.
    Koh, C.-N., Hsu, S.-H., Cheng, W.-J., Chen, M.-H., Huang, Y.-H., Yeh, K.-F., Chang, C. & Lo, Y.-Y. (2013) Effects of arthropod abundance on nestling growth and survival of Taiwan Barbets (Megalaima nuchalis). Taiwan Journal of Biodiversity 15, 185–195.
    Koh, C.-N., Lee, P.-F. & Chiou, C.-R. (2008) Influences of fragment size, isolation and habitat heterogeneity on bird assemblage composition in urban landscapes— A case study of Taipei parks and green areas. Journal of City and Planning 35, 141–154.
    Kotze, D.J., Lowe, E.C., MacIvor, J.S., Ossola, A., Norton, B.A., Hochuli, D.F., Mata, L., Moretti, M., Gagné, S.A., Handa, I.T., Jones, T.M., Threlfall, C.G. & Hahs, A.K. (2022) Urban forest invertebrates: how they shape and respond to the urban environment. Urban Ecosystems 25, 1589–1609. https://doi.org/10.1007/s11252-022-01240-9
    Kozakiewicz, C.P., Burridge, C.P., Funk, W.C., Salerno, P.E., Trumbo, D.R., Gagne, R.B., Boydston, E.E., Fisher, R.N., Lyren, L.M., Jennings, M.K., Riley, S.P.D., Serieys, L.E.K., VandeWoude, S., Crooks, K.R. & Carver, S. (2019) Urbanization reduces genetic connectivity in bobcats (Lynx rufus) at both intra– and interpopulation spatial scales. Molecular Ecology 28, 5068–5085. https://doi.org/10.1111/mec.15274
    Kress, W.J., García-Robledo, C., Uriarte, M. & Erickson, D.L. (2015) DNA barcodes for ecology, evolution, and conservation. Trends in Ecology & Evolution 30, 25–35. https://doi.org/10.1016/j.tree.2014.10.008
    Lai, Y.-T., Yeung, C.K.L., Omland, K.E., Pang, E.-L., Hao, Y., Liao, B.-Y., Cao, H.-F., Zhang, B.-W., Yeh, C.-F., Hung, C.-M., Hung, H.-Y., Yang, M.-Y., Liang, W., Hsu, Y.-C., Yao, C.-T., Dong, L., Lin, K. & Li, S.-H. (2019) Standing genetic variation as the predominant source for adaptation of a songbird. Proceedings of the National Academy of Sciences 116, 2152–2157. https://doi.org/10.1073/pnas.1813597116
    Lê, S., Josse, J. & Husson, F. (2008) FactoMineR: an R package for multivariate analysis. Journal of Statistical Software 25, 1–18. https://doi.org/10.18637/jss.v025.i01
    Leaché, A.D., Fujita, M.K., Minin, V.N. & Bouckaert, R.R. (2014) Species delimitation using genome-wide SNP data. Systematic Biology 63, 534–542. https://doi.org/10.1093/sysbio/syu018
    Lee, C.-L. (1964) Spiders of Formosa (Taiwan). Taichung Junior Teachers College Publisher, Taiwan, 84 pp.
    Lepczyk, C.A., Aronson, M.F.J., Evans, K.L., Goddard, M.A., Lerman, S.B. & MacIvor, J.S. (2017) Biodiversity in the city: fundamental questions for understanding the ecology of urban green spaces for biodiversity conservation. BioScience 67, 799–807. https://doi.org/10.1093/biosci/bix079
    Lettoof, D.C., Thomson, V.A., Cornelis, J., Bateman, P.W., Aubret, F., Gagnon, M.M. & Von Takach, B. (2021) Bioindicator snake shows genomic signatures of natural and anthropogenic barriers to gene flow. PLOS ONE 16, e0259124. https://doi.org/10.1371/journal.pone.0259124
    Li, G., Fang, C., Li, Y., Wang, Z., Sun, S., He, S., Qi, W., Bao, C., Ma, H., Fan, Y., Feng, Y. & Liu, X. (2022) Global impacts of future urban expansion on terrestrial vertebrate diversity. Nature Communications 13, 1628. https://doi.org/10.1038/s41467-022-29324-2
    Lim, P.X., Lin, S., Lin, W. & Tseng, H. (2023) Breeding records, urban habitat, and threats to the masked palm civet in Taiwan. The Journal of Wildlife Management, e22467. https://doi.org/10.1002/jwmg.22467
    Lin, Y., Zhao, H., Koh, J.K.H. & Li, S. (2022) Taxonomy notes on twenty-eight spider species (Arachnida: Araneae) from Asia. Zoological Systematics 47, 198–270.
    Liu, H.-H. (2009) A taxonomic study on the spider genus Leucauge (Aranea: Tetragnathidae) of Taiwan. Master Thesis. Department of Life Science, National Taiwan Normal University, 141pp.
    Liu, P.K.C. & Tung, A.-C. (2003) Urban development in Taiwan: retrospect and prospect. Journal of Population Studies 26, 1–25.
    Liu, Z., He, C., Zhou, Y. & Wu, J. (2014) How much of the world’s land has been urbanized, really? A hierarchical framework for avoiding confusion. Landscape Ecology 29, 763–771. https://doi.org/10.1007/s10980-014-0034-y
    Lo, Y.-Y., Cheng, R.-C. & Lin, C.-P. (2021a) Species delimitation and taxonomic revision of Oxyopes (Araneae: Oxyopidae) of Taiwan, with description of two new species. Zootaxa 4927, 58–86. https://doi.org/10.11646/zootaxa.4927.1.4
    Lo, Y.-Y., Wei, C. & Cheng, R.-C. (2023) Tree-dwelling wolves: a new arboreal Hogna species (Araneae: Lycosidae) from Taiwan. Zootaxa 5353, 47–59. https://doi.org/10.11646/zootaxa.5353.1.2
    Lo, Y.-Y., Wei, C. & Huang, W.-C. (2021b) A newly recorded species of Cheiracanthium C. L. Koch, 1839 (Araneae, Cheiracanthiidae) from Taiwan. TW Journal of Biodiversity 23, 136–152.
    Lohse, K. (2009) Can mtDNA barcodes be used to delimit species? A response to Pons et al. (2006). Systematic Biology 58, 439–442. https://doi.org/10.1093/sysbio/syp039
    Lourenço, A., Álvarez, D., Wang, I.J. & Velo‐Antón, G. (2017) Trapped within the city: integrating demography, time since isolation and population‐specific traits to assess the genetic effects of urbanization. Molecular Ecology 26, 1498–1514. https://doi.org/10.1111/mec.14019
    Lowe, E.C., Wilder, S.M. & Hochuli, D.F. (2014) Urbanisation at multiple scales is associated with larger size and higher fecundity of an orb-weaving spider. PLoS ONE 9, e105480. https://doi.org/10.1371/journal.pone.0105480
    Lowe, E.C., Wilder, S.M. & Hochuli, D.F. (2017) Life history of an urban-tolerant spider shows resilience to anthropogenic habitat disturbance. Journal of Urban Ecology 3. https://doi.org/10.1093/jue/jux004
    Luo, A., Ling, C., Ho, S.Y.W. & Zhu, C.-D. (2018) Comparison of methods for molecular species delimitation across a range of speciation scenarios. Systematic Biology 67, 830–846. https://doi.org/10.1093/sysbio/syy011
    Ma, Z., Ren, J. & Zhang, R. (2022) Identifying the genetic distance threshold for Entiminae (Coleoptera: Curculionidae) species delimitation via COI barcodes. Insects 13, 261. https://doi.org/10.3390/insects13030261
    Maddock, S.T., Childerstone, A., Fry, B.G., Williams, D.J., Barlow, A. & Wüster, W. (2017) Multi-locus phylogeny and species delimitation of Australo-Papuan blacksnakes (Pseudechis Wagler, 1830: Elapidae: Serpentes). Molecular Phylogenetics and Evolution 107, 48–55. https://doi.org/10.1016/j.ympev.2016.09.005
    Magoga, G., Fontaneto, D. & Montagna, M. (2021) Factors affecting the efficiency of molecular species delimitation in a species‐rich insect family. Molecular Ecology Resources 21, 1475–1489. https://doi.org/10.1111/1755-0998.13352
    Maloney, D., Drummond, F.A. & Alford, R. (2003) Spider predation in agroecosystems: can spiders effectively control pest populations. Maine Agricultural and Forest Experiment Station Technical Bulletin 190, Orono.
    Marcacci, G., Grass, I., Rao, V.S., Kumar S, S., Tharini, K.B., Belavadi, V.V., Nölke, N., Tscharntke, T. & Westphal, C. (2022) Functional diversity of farmland bees across rural–urban landscapes in a tropical megacity. Ecological Applications 32, e2699. https://doi.org/10.1002/eap.2699
    Marin, K., Coon, A., Carson, R., Debes, P.V. & Fraser, D.J. (2016) Striking phenotypic variation yet low genetic differentiation in sympatric lake trout (Salvelinus namaycush). PLOS ONE 11, e0162325. https://doi.org/10.1371/journal.pone.0162325
    Markowski, M., Minias, P., Bańbura, M., Glądalski, M., Kaliński, A., Skwarska, J., Wawrzyniak, J., Zieliński, P. & Bańbura, J. (2021) Genetic structure of urban and non-urban populations differs between two common parid species. Scientific Reports 11, 10428. https://doi.org/10.1038/s41598-021-89847-4
    Mather, A., Hancox, D. & Riginos, C. (2015) Urban development explains reduced genetic diversity in a narrow range endemic freshwater fish. Conservation Genetics 16, 625–634. https://doi.org/10.1007/s10592-014-0688-7
    Maxwell, S.L., Fuller, R.A., Brooks, T.M. & Watson, J.E.M. (2016) Biodiversity: The ravages of guns, nets and bulldozers. Nature 536, 143–145. https://doi.org/10.1038/536143a
    McDonald, R.I. (2008) Global urbanization: can ecologists identify a sustainable way forward? Frontiers in Ecology and the Environment 6, 99–104. https://doi.org/10.1890/070038
    McDonald, R.I., Marcotullio, P.J. & Güneralp, B. (2013) Urbanization and global trends in biodiversity and ecosystem services. In: T. Elmqvist, M. Fragkias, J. Goodness, B. Güneralp, P. J. Marcotullio, R. I. McDonald, S. Parnell, M. Schewenius, M. Sendstad, K. C. Seto, and C. Wilkinson (Eds), Urbanization, Biodiversity and Ecosystem Services: Challenges and Opportunities: A Global Assessment. Springer Netherlands, Dordrecht, pp. 31–52.
    McGinley, R.H., Prenter, J. & Taylor, P.W. (2013) Whole-organism performance in a jumping spider, Servaea incana (Araneae: Salticidae): links with morphology and between performance traits. Biological Journal of the Linnean Society 110, 644–657. https://doi.org/10.1111/bij.12155
    Meier, R., Blaimer, B.B., Buenaventura, E., Hartop, E., Rintelen, T., Srivathsan, A. & Yeo, D. (2021) A re‐analysis of the data in Sharkey et al.’s (2021) minimalist revision reveals that BINs do not deserve names, but BOLD Systems needs a stronger commitment to open science. Cladistics 38, 264–275. https://doi.org/10.1111/cla.12489
    Melliger, R.L., Braschler, B., Rusterholz, H.-P. & Baur, B. (2018) Diverse effects of degree of urbanisation and forest size on species richness and functional diversity of plants, and ground surface-active ants and spiders. PLOS ONE 13, e0199245. https://doi.org/10.1371/journal.pone.0199245
    Merckx, T., Nielsen, M.E., Heliölä, J., Kuussaari, M., Pettersson, L.B., Pöyry, J., Tiainen, J., Gotthard, K. & Kivelä, S.M. (2021) Urbanization extends flight phenology and leads to local adaptation of seasonal plasticity in Lepidoptera. Proceedings of the National Academy of Sciences 118, e2106006118. https://doi.org/10.1073/pnas.2106006118
    Merckx, T., Souffreau, C., Kaiser, A., Baardsen, L.F., Backeljau, T., Bonte, D., Brans, K.I., Cours, M., Dahirel, M., Debortoli, N., De Wolf, K., Engelen, J.M.T., Fontaneto, D., Gianuca, A.T., Govaert, L., Hendrickx, F., Higuti, J., Lens, L., Martens, K., Matheve, H., Matthysen, E., Piano, E., Sablon, R., Schön, I., Van Doninck, K., De Meester, L. & Van Dyck, H. (2018) Body-size shifts in aquatic and terrestrial urban communities. Nature 558, 113–116. https://doi.org/10.1038/s41586-018-0140-0
    Meyer, C.P. & Paulay, G. (2005) DNA barcoding: error rates based on comprehensive sampling. PLoS Biology 3, e422. https://doi.org/10.1371/journal.pbio.0030422
    Michalko, R., Hamřík, T., Košulič, O., Songsangchote, C., Trisurat, Y. & Birkhofer, K. (2023) Effects of land use and climate on web-building spiders and their prey in dry dipterocarp forests. Forest Ecology and Management 546, 121366. https://doi.org/10.1016/j.foreco.2023.121366
    Michalko, R., Pekár, S. & Entling, M.H. (2019) An updated perspective on spiders as generalist predators in biological control. Oecologia 189, 21–36. https://doi.org/10.1007/s00442-018-4313-1
    Miles, L.S., Dyer, R.J. & Verrelli, B.C. (2018a) Urban hubs of connectivity: contrasting patterns of gene flow within and among cities in the western black widow spider. Proceedings of the Royal Society B: Biological Sciences 285, 20181224. https://doi.org/10.1098/rspb.2018.1224
    Miles, L.S., Johnson, J.C., Dyer, R.J. & Verrelli, B.C. (2018b) Urbanization as a facilitator of gene flow in a human health pest. Molecular Ecology 27, 3219–3230. https://doi.org/10.1111/mec.14783
    Miles, L.S., Rivkin, L.R., Johnson, M.T.J., Munshi‐South, J. & Verrelli, B.C. (2019) Gene flow and genetic drift in urban environments. Molecular Ecology 28, 4138–4151. https://doi.org/10.1111/mec.15221
    Millard, J., Outhwaite, C.L., Kinnersley, R., Freeman, R., Gregory, R.D., Adedoja, O., Gavini, S., Kioko, E., Kuhlmann, M., Ollerton, J., Ren, Z.-X. & Newbold, T. (2021) Global effects of land-use intensity on local pollinator biodiversity. Nature Communications 12, 2902. https://doi.org/10.1038/s41467-021-23228-3
    Minh, B.Q., Schmidt, H.A., Chernomor, O., Schrempf, D., Woodhams, M.D., von Haeseler, A. & Lanfear, R. (2020) IQ-TREE 2: New models and efficient methods for phylogenetic inference in the genomic era. Molecular Biology and Evolution 37, 1530–1534. https://doi.org/10.1093/molbev/msaa015
    Mitteroecker, P., Gunz, P., Windhager, S. & Schaefer, K. (2013) A brief review of shape, form, and allometry in geometric morphometrics, with applications to human facial morphology. Hystrix, the Italian Journal of Mammalogy 24, 59–66. https://doi.org/10.4404/hystrix-24.1-6369
    Moorhead, L.C. & Philpott, S.M. (2013) Richness and composition of spiders in urban green spaces in Toledo, Ohio. The Journal of Arachnology 41, 356–363.
    Moritz, C. & Cicero, C. (2004) DNA Barcoding: Promise and Pitfalls. PLOS Biology 2, e354. https://doi.org/10.1371/journal.pbio.0020354
    Morse, D.H. (2014) The relation of size to climbing, line-crossing and running performances of male crab spiders. Evolutionary Ecology 28, 23–36. https://doi.org/10.1007/s10682-013-9659-6
    Moya-Laraño, J., Vinković, D., Allard, C.M. & Foellmer, M.W. (2007) Mass-mediated sex differences in climbing patterns support the gravity hypothesis of sexual size dimorphism. Web Ecology 7, 106–112. https://doi.org/10.5194/we-7-106-2007
    Moya‐Laraño, J., Vinković, D., Allard, C.M. & Foellmer, M.W. (2009) Optimal climbing speed explains the evolution of extreme sexual size dimorphism in spiders. Journal of Evolutionary Biology 22, 954–963. https://doi.org/10.1111/j.1420-9101.2009.01707.x
    Moya-Laraño, J., Vinković, D., De Mas, E., Corcobado, G. & Moreno, E. (2008) Morphological evolution of spiders predicted by pendulum mechanics. PLoS ONE 3, e1841. https://doi.org/10.1371/journal.pone.0001841
    Mukhtar, M.K. (2013) Description of two new species of the genus Oxyopes (Araneae: Oxyopidae) from Punjab, Pakistan. Pakistan Journal of Zoology 45, 1511–1516.
    Mukhtar, M.K. (2017) Two new species of Oxyopes (Araneae: Oxyopidae) from Punjab, Pakistan. Pakistan Journal of Zoology 49, 149–154. https://doi.org/10.17582/journal.pjz/2017.49.1.143.148
    Munshi-South, J. & Kharchenko, K. (2010) Rapid, pervasive genetic differentiation of urban white-footed mouse (Peromyscus leucopus) populations in New York City. Molecular Ecology 19, 4242–4254. https://doi.org/10.1111/j.1365-294X.2010.04816.x
    Munshi-South, J., Zak, Y. & Pehek, E. (2013) Conservation genetics of extremely isolated urban populations of the northern dusky salamander (Desmognathus fuscus) in New York City. PeerJ 1, e64. https://doi.org/10.7717/peerj.64
    Munshi-South, J., Zolnik, C.P. & Harris, S.E. (2016) Population genomics of the Anthropocene: urbanization is negatively associated with genome-wide variation in white-footed mouse populations. Evolutionary Applications 9, 546–564. https://doi.org/10.1111/eva.12357
    Nadolny, A.A., Omelko, M.M., Marusik, Y.M. & Blagoev, G. (2016) A new species of spider belonging to the Pardosa lugubris-group (Araneae: Lycosidae) from Far East Asia. Zootaxa 4072, 263–281. https://doi.org/10.11646/zootaxa.4072.2.8
    Newbold, T., Hudson, L.N., Hill, S.L.L., Contu, S., Lysenko, I., Senior, R.A., Börger, L., Bennett, D.J., Choimes, A., Collen, B., Day, J., De Palma, A., Díaz, S., Echeverria-Londoño, S., Edgar, M.J., Feldman, A., Garon, M., Harrison, M.L.K., Alhusseini, T., Ingram, D.J., Itescu, Y., Kattge, J., Kemp, V., Kirkpatrick, L., Kleyer, M., Correia, D.L.P., Martin, C.D., Meiri, S., Novosolov, M., Pan, Y., Phillips, H.R.P., Purves, D.W., Robinson, A., Simpson, J., Tuck, S.L., Weiher, E., White, H.J., Ewers, R.M., Mace, G.M., Scharlemann, J.P.W. & Purvis, A. (2015) Global effects of land use on local terrestrial biodiversity. Nature 520, 45–50. https://doi.org/10.1038/nature14324
    Nice, C.C. & Shapiro, A.M. (1999) Molecular and morphological divergence in the butterfly genus Lycaeides (Lepidoptera: Lycaenidae) in North America: evidence of recent speciation. Journal of Evolutionary Biology 12, 936–950. https://doi.org/10.1046/j.1420-9101.1999.00111.x
    van Niekerk, P. & Dippenaar-Schoeman, A.S. (1994) A revision of the Afrotropical species of Peucetia (Araneae: Oxyopidae). Entomology Memoir, Department of Agriculture Republic of South Africa 89, 1–50.
    Noël, S. & Lapointe, F.-J. (2010) Urban conservation genetics: study of a terrestrial salamander in the city. Biological Conservation 143, 2823–2831. https://doi.org/10.1016/j.biocon.2010.07.033
    Nyffeler, M. (1996) Spiders as biological control agents in cotton plantations in Texas. Habilitation Thesis. Faculty of Science, University of Bern.
    Nyffeler, M., Dean, D.A. & Sterling, W.L. (1987) Evaluation of the importance of the striped lynx spider, Oxyopes salticus (Araneae: Oxyopidae), as a predator in Texas cotton. Environmental Entomology 16, 1114–1123. https://doi.org/10.1093/ee/16.5.1114
    Nyffeler, M., Dean, D.A. & Sterling, W.L. (1992) Diets, feeding specialization, and predatory role of two lynx spiders, Oxyopes salticus and Peucetia viridans (Araneae:Oxyopidae), in a Texas cotton agroecosystem. Environmental Entomology 21, 1457–1465. https://doi.org/10.1093/ee/21.6.1457
    Olsen, A.M. & Westneat, M.W. (2015) StereoMorph: an R package for the collection of 3D landmarks and curves using a stereo camera set‐up. Methods in Ecology and Evolution 6, 351–356. https://doi.org/10.1111/2041-210X.12326
    Oziolor, E.M., Reid, N.M., Yair, S., Lee, K.M., Guberman VerPloeg, S., Bruns, P.C., Shaw, J.R., Whitehead, A. & Matson, C.W. (2019) Adaptive introgression enables evolutionary rescue from extreme environmental pollution. Science 364, 455–457. https://doi.org/10.1126/science.aav4155
    Padial, J.M., Miralles, A., De la Riva, I. & Vences, M. (2010) The integrative future of taxonomy. Frontiers in Zoology 7, 1–14. https://doi.org/10.1186/1742-9994-7-16
    Palumbi, S.R. (2001) Humans as the world’s greatest evolutionary force. Science 293, 1786–1790. https://doi.org/10.1126/science.293.5536.1786
    Papadopoulou, A., Bergsten, J., Fujisawa, T., Monaghan, M.T., Barraclough, T.G. & Vogler, A.P. (2008) Speciation and DNA barcodes: testing the effects of dispersal on the formation of discrete sequence clusters. Philosophical Transactions of the Royal Society B: Biological Sciences 363, 2987–2996. https://doi.org/10.1098/rstb.2008.0066
    Papadopoulou, A., Monaghan, M.T., Barraclough, T.G. & Vogler, A.P. (2009) Sampling error does not invalidate the Yule-coalescent model for species delimitation. A response to Lohse (2009). Systematic Biology 58, 442–444. https://doi.org/10.1093/sysbio/syp038
    Paradis, E. (2010) pegas: an R package for population genetics with an integrated–modular approach. Bioinformatics 26, 419–420. https://doi.org/10.1093/bioinformatics/btp696
    Paradis, E. & Schliep, K. (2019) ape 5.0: an environment for modern phylogenetics and evolutionary analyses in R. Bioinformatics 35, 526–528. https://doi.org/10.1093/bioinformatics/bty633
    Patil, V. (2017) The legs that rock the cradle. Resonance 22, 455–460. https://doi.org/10.1007/s12045-017-0488-8
    Pebesma, E. (2018) Simple features for R: standardized support for spatial vector data. The R Journal 10, 439. https://doi.org/10.32614/RJ-2018-009
    Pebesma, E. & Bivand, R. (2023) Spatial Data Science: With Applications in R. Chapman and Hall/CRC, New York. Available from: https://www.taylorfrancis.com/books/9780429459016 (March 28, 2024)
    Peng, M.-H., Hung, Y.-C., Liu, K.-L. & Neoh, K.-B. (2020) Landscape configuration and habitat complexity shape arthropod assemblage in urban parks. Scientific Reports 10, 16043. https://doi.org/10.1038/s41598-020-73121-0
    Peng, M.-H., Liu, K.-L., Tsai, C.-Y., Shiodera, S., Haraguchi, T.F., Itoh, M., Tseng, S.-P., Yang, C.-C.S., Singham, G.V., Tay, J.-W. & Neoh, K.-B. (2023) Urbanization influences the trophic position, morphology, and colony structure of invasive African big-headed ants (Hymenoptera: Formicidae) in Taiwan. Myrmecological News 33, 197–209. https://doi.org/10.25849/MYRMECOL.NEWS_033:197
    Pérez-Barros, P., Confalonieri, V.A., Paschke, K. & Lovrich, G.A. (2015) Incongruence between molecular and morphological characters in the southern king crabs Lithodes santolla and Lithodes confundens (Decapoda: Anomura). Polar Biology 38, 2097–2107. https://doi.org/10.1007/s00300-015-1770-4
    Perrier, C., Lozano Del Campo, A., Szulkin, M., Demeyrier, V., Gregoire, A. & Charmantier, A. (2018) Great tits and the city: distribution of genomic diversity and gene-environment associations along an urbanization gradient. Evolutionary Applications 11, 593–613. https://doi.org/10.1111/eva.12580
    Piacentini, L.N. & Ramírez, M.J. (2019) Hunting the wolf: a molecular phylogeny of the wolf spiders (Araneae, Lycosidae). Molecular Phylogenetics and Evolution 136, 227–240. https://doi.org/10.1016/j.ympev.2019.04.004
    Polotow, D., Carmichael, A. & Griswold, C.E. (2015) Total evidence analysis of the phylogenetic relationships of Lycosoidea spiders (Araneae, Entelegynae). Invertebrate Systematics 29, 124–163. https://doi.org/10.1071/IS14041
    Pons, J., Barraclough, T.G., Gomez-Zurita, J., Cardoso, A., Duran, D.P., Hazell, S., Kamoun, S., Sumlin, W.D. & Vogler, A.P. (2006) Sequence-based species delimitation for the DNA taxonomy of undescribed insects. Systematic Biology 55, 595–609. https://doi.org/10.1080/10635150600852011
    Prenter, J. (1995) Multivariate morphometrics and sexual dimorphism in the orb-web spider Metellina segmentata (Clerck, 1757) (Araneae, Metidae). Biological Journal of the Linnean Society 55, 345–354. https://doi.org/10.1006/bijl.1995.0046
    Prenter, J., Fanson, B.G. & Taylor, P.W. (2012) Whole-organism performance and repeatability of locomotion on inclines in spiders. Animal Behaviour 83, 1195–1201. https://doi.org/10.1016/j.anbehav.2012.02.010
    Prenter, J., Pérez-Staples, D. & Taylor, P.W. (2010a) Functional relations between locomotor performance traits in spiders and implications for evolutionary hypotheses. BMC Research Notes 3, 306. https://doi.org/10.1186/1756-0500-3-306
    Prenter, J., Pérez‐Staples, D. & Taylor, P.W. (2010b) The effects of morphology and substrate diameter on climbing and locomotor performance in male spiders. Functional Ecology 24, 400–408. https://doi.org/10.1111/j.1365-2435.2009.01633.x
    Preston-Mafham, K.G. (1999) Notes on bridal veil construction in Oxyopes schenkeli Lessert, 1927 (Araneae: Oxyopidae) in Uganda. Bulletin of the British Arachnological Society 11, 150–152.
    Prévot, V., Jordaens, K., Sonet, G. & Backeljau, T. (2013) Exploring species level taxonomy and species delimitation methods in the facultatively self-fertilizing land snail genus Rumina (Gastropoda: Pulmonata). PLOS ONE 8, e60736. https://doi.org/10.1371/journal.pone.0060736
    Pritchard, J.K., Stephens, M. & Donnelly, P. (2000) Inference of population structure using multilocus genotype data. Genetics 155, 945–959. https://doi.org/10.1093/genetics/155.2.945
    Puillandre, N., Brouillet, S. & Achaz, G. (2021) ASAP: assemble species by automatic partitioning. Molecular Ecology Resources 21, 609–620. https://doi.org/10.1111/1755-0998.13281
    Puillandre, N., Lambert, A., Brouillet, S. & Achaz, G. (2012) ABGD, Automatic Barcode Gap Discovery for primary species delimitation. Molecular Ecology 21, 1864–1877. https://doi.org/10.1111/j.1365-294X.2011.05239.x
    Punzo, F. (2002) Early experience and prey preference in the lynx spider, Oxyopes salticus Hentz (Araneae: Oxyopidae). Journal of the New York Entomological Society 110, 255–259.
    de Queiroz, K. (2007) Species concepts and species delimitation. Systematic Biology 56, 879–886. https://doi.org/10.1080/10635150701701083
    R Core Team (2024) R: A language and environment for statistical computing.
    Rambaut, A., Drummond, A.J., Xie, D., Baele, G. & Suchard, M.A. (2018) Posterior summarization in Bayesian phylogenetics using Tracer 1.7. Systematic Biology 67, 901–904. https://doi.org/10.1093/sysbio/syy032
    Ranasinghe, U.G.S.L., Eberle, J., Thormann, J., Bohacz, C., Benjamin, S.P. & Ahrens, D. (2022) Multiple species delimitation approaches with COI barcodes poorly fit each other and morphospecies – An integrative taxonomy case of Sri Lankan Sericini chafers (Coleoptera: Scarabaeidae). Ecology and Evolution 12, e8942. https://doi.org/10.1002/ece3.8942
    Reed, D.H. & Frankham, R. (2003) Correlation between fitness and genetic diversity. Conservation Biology 17, 230–237. https://doi.org/10.1046/j.1523-1739.2003.01236.x
    Reid, B.N., Le, M., McCORD, W.P., Iverson, J.B., Georges, A., Bergmann, T., Amato, G., Desalle, R. & Naro-Maciel, E. (2011) Comparing and combining distance-based and character-based approaches for barcoding turtles. Molecular Ecology Resources 11, 956–967. https://doi.org/10.1111/j.1755-0998.2011.03032.x
    Reid, N.M. & Carstens, B.C. (2012) Phylogenetic estimation error can decrease the accuracy of species delimitation: a Bayesian implementation of the general mixed Yule-coalescent model. BMC Evolutionary Biology 12, 196. https://doi.org/10.1186/1471-2148-12-196
    Reid, N.M., Proestou, D.A., Clark, B.W., Warren, W.C., Colbourne, J.K., Shaw, J.R., Karchner, S.I., Hahn, M.E., Nacci, D., Oleksiak, M.F., Crawford, D.L. & Whitehead, A. (2016) The genomic landscape of rapid repeated evolutionary adaptation to toxic pollution in wild fish. Science 354, 1305–1308. https://doi.org/10.1126/science.aah4993
    Revell, L.J. (2012) phytools: an R package for phylogenetic comparative biology (and other things). Methods in Ecology and Evolution 3, 217–223. https://doi.org/10.1111/j.2041-210X.2011.00169.x
    Robinson, E., Blagoev, G., Hebert, P. & Adamowicz, S. (2009) Prospects for using DNA barcoding to identify spiders in species-rich genera. ZooKeys 16, 27–46. https://doi.org/10.3897/zookeys.16.239
    Rodríguez-Bardía, M., Fuchs, E.J., Barrantes, G., Madrigal-Brenes, R. & Sandoval, L. (2022) Genetic structure in neotropical birds with different tolerance to urbanization. Scientific Reports 12, 6054. https://doi.org/10.1038/s41598-022-09961-9
    Rodriguez-Martínez, S., Carrete, M., Roques, S., Rebolo-Ifrán, N. & Tella, J.L. (2014) High urban breeding densities do not disrupt genetic monogamy in a bird species. PLOS ONE 9, e91314. https://doi.org/10.1371/journal.pone.0091314
    Rohlf, F.J. & Marcus, L.F. (1993) A revolution morphometrics. Trends in Ecology & Evolution 8, 129–132. https://doi.org/10.1016/0169-5347(93)90024-J
    Ronquist, F., Teslenko, M., van der Mark, P., Ayres, D.L., Darling, A., Höhna, S., Larget, B., Liu, L., Suchard, M.A. & Huelsenbeck, J.P. (2012) MrBayes 3.2: Efficient Bayesian phylogenetic inference and model choice across a large model space. Systematic Biology 61, 539–542. https://doi.org/10.1093/sysbio/sys029
    Rossini, B.C., Oliveira, C.A.M., Melo, F.A.G.D., Bertaco, V.D.A., Astarloa, J.M.D.D., Rosso, J.J., Foresti, F. & Oliveira, C. (2016) Highlighting Astyanax species diversity through DNA barcoding. PLOS ONE 11, e0167203. https://doi.org/10.1371/journal.pone.0167203
    Rousset, F. (2008) GENEPOP ’007: a complete re‐implementation of the GENEPOP software for Windows and Linux. Molecular Ecology Resources 8, 103–106. https://doi.org/10.1111/j.1471-8286.2007.01931.x
    Rovner, J.S. (1980) Adaptations for prey capture in oxyopid spiders: phylogenetic implications. In: Proceedings of the 8th International Congress of Arachnology. Vienna, pp. 486–487.
    Sagastume-Espinoza, K.O., Simmons, L.W. & Harvey, M.S. (2024) Use of geometric morphometrics to distinguish trapdoor spider morphotypes (Mygalomorphae: Anamidae: Proshermacha): a useful tool for mygalomorph taxonomy. The Journal of Arachnology 52, 31–40. https://doi.org/10.1636/JoA-S-22-033
    Saito, S. (1933) Notes on the spiders from Formosa. Transactions of the Sapporo Natural History Society 13, 32–60.
    Salgado-Roa, F.C., Chamberland, L., Pardo-Diaz, C., Cisneros-Heredia, D.F., Lasso, E. & Salazar, C. (2022) Dissecting a geographical colourful tapestry: phylogeography of the colour polymorphic spider Gasteracantha cancriformis. Journal of Zoological Systematics and Evolutionary Research 2022, 1–11. https://doi.org/10.1155/2022/8112945
    Salgado-Roa, F.C., Gamez, A., Sanchez-Herrera, M., Pardo-Díaz, C. & Salazar, C. (2021) Divergence promoted by the northern Andes in the giant fishing spider Ancylometes bogotensis (Araneae: Ctenidae). Biological Journal of the Linnean Society 132, 495–508. https://doi.org/10.1093/biolinnean/blaa220
    Salmón, P., Jacobs, A., Ahrén, D., Biard, C., Dingemanse, N.J., Dominoni, D.M., Helm, B., Lundberg, M., Senar, J.C., Sprau, P., Visser, M.E. & Isaksson, C. (2021) Continent-wide genomic signatures of adaptation to urbanisation in a songbird across Europe. Nature Communications 12, 2983. https://doi.org/10.1038/s41467-021-23027-w
    Sandall, E.L., Maureaud, A.A., Guralnick, R., McGeoch, M.A., Sica, Y.V., Rogan, M.S., Booher, D.B., Edwards, R., Franz, N., Ingenloff, K., Lucas, M., Marsh, C.J., McGowan, J., Pinkert, S., Ranipeta, A., Uetz, P., Wieczorek, J. & Jetz, W. (2023) A globally integrated structure of taxonomy to support biodiversity science and conservation. Trends in Ecology & Evolution 38, 1143–1153. https://doi.org/10.1016/j.tree.2023.08.004
    Santos, A.J. (2017) The jumping lynx spider Oxyopes salticus Hentz, 1845 and its Neotropical relatives (Araneae: Oxyopidae). Zootaxa 4216, 457–481. https://doi.org/10.11646/zootaxa.4216.5.3
    Santos, A.J. & Brescovit, A. (2003) A revision of the Neotropical species of the lynx spider genus Peucetia Thorell 1869 (Araneae: Oxyopidae). Insect Systematics & Evolution 34, 95–116.
    Satler, J.D., Carstens, B.C. & Hedin, M. (2013) Multilocus species delimitation in a complex of morphologically conserved trapdoor spiders (Mygalomorphae, Antrodiaetidae, Aliatypus). Systematic Biology 62, 805–823. https://doi.org/10.1093/sysbio/syt041
    Schell, C.J., Stanton, L.A., Young, J.K., Angeloni, L.M., Lambert, J.E., Breck, S.W. & Murray, M.H. (2021) The evolutionary consequences of human–wildlife conflict in cities. Evolutionary Applications 14, 178–197. https://doi.org/10.1111/eva.13131
    Schiavina, M., Melchiorri, M., Corbane, C., Freire, S. & Batista E Silva, F. (2022) Built-up areas are expanding faster than population growth: regional patterns and trajectories in Europe. Journal of Land Use Science 17, 591–608. https://doi.org/10.1080/1747423X.2022.2055184
    Schmidt, C. & Garroway, C.J. (2021) The population genetics of urban and rural amphibians in North America. Molecular Ecology 30, 3918–3929. https://doi.org/10.1111/mec.16005
    Schneider, A., Friedl, M.A. & Potere, D. (2009) A new map of global urban extent from MODIS satellite data. Environmental Research Letters 4, 044003. https://doi.org/10.1088/1748-9326/4/4/044003
    Schwarz, N., Moretti, M., Bugalho, M.N., Davies, Z.G., Haase, D., Hack, J., Hof, A., Melero, Y., Pett, T.J. & Knapp, S. (2017) Understanding biodiversity-ecosystem service relationships in urban areas: a comprehensive literature review. Ecosystem Services 27, 161–171. https://doi.org/10.1016/j.ecoser.2017.08.014
    Sen, S. & Sudhin, P.P. (2023) A new species and a new record of Hamadruas Deeleman-Reinhold, 2009 (Araneae: Oxyopidae) from India. Records of the Zoological Survey of India 122, 345–248.
    Sepp, T., McGraw, K.J., Kaasik, A. & Giraudeau, M. (2018) A review of urban impacts on avian life-history evolution: does city living lead to slower pace of life? Global Change Biology 24, 1452–1469. https://doi.org/10.1111/gcb.13969
    Seto, K.C., Fragkias, M., Güneralp, B. & Reilly, M.K. (2011) A meta-analysis of global urban land expansion. PLOS ONE 6, e23777. https://doi.org/10.1371/journal.pone.0023777
    Sharkey, M.J., Janzen, D.H., Hallwachs, W., Chapman, E.G., Smith, M.A., Dapkey, T., Brown, A., Ratnasingham, S., Naik, S., Manjunath, R., Perez, K., Milton, M., Hebert, P., Shaw, S.R., Kittel, R.N., Solis, M.A., Metz, M.A., Goldstein, P.Z., Brown, J.W., Quicke, D.L.J., van Achterberg, C., Brown, B.V. & Burns, J.M. (2021) Minimalist revision and description of 403 new species in 11 subfamilies of Costa Rican braconid parasitoid wasps, including host records for 219 species. ZooKeys 1013, 1–665. https://doi.org/10.3897/zookeys.1013.55600
    Shih, W.-Y. (2018) Bird diversity of greenspaces in the densely developed city centre of Taipei. Urban Ecosystems 21, 379–393. https://doi.org/10.1007/s11252-017-0720-z
    Shivakumar, M.S. & Kumar, D. (2010) Biological control potential of male and female Oxyopes shweta (Araenae: Oxyopidae) against polyphagous insect pest Spodoptera litura. Journal of Ecobiotechnology 2, 20–24.
    Sidlauskas, B. (2008) Continuous and arrested morphological diversification in sister clades of characiform fishes: a phylomorphospace approach. Evolution 62, 3135–3156. https://doi.org/10.1111/j.1558-5646.2008.00519.x
    Simon, E. (1885) Arachnides recueillis par M. Weyers à Sumatra. Premier envoi. Annales de la Société Entomologique de Belgique 29, 30–39.
    Sites, J.W. & Marshall, J.C. (2003) Delimiting species: a Renaissance issue in systematic biology. Trends in Ecology & Evolution 18, 462–470. https://doi.org/10.1016/S0169-5347(03)00184-8
    Sites, J.W. & Marshall, J.C. (2004) Operational criteria for delimiting species. Annual Review of Ecology, Evolution, and Systematics 35, 199–227. https://doi.org/10.1146/annurev.ecolsys.35.112202.130128
    Smith, H.M. (2003) Shape variation in Australian Poltys species (Araneae: Araneidae). Bulletin of the British Arachnological Society 12, 355–360.
    Smith, U.E. & Hendricks, J.R. (2013) Geometric morphometric character suites as phylogenetic data: extracting phylogenetic signal from gastropod shells. Systematic Biology 62, 366–385. https://doi.org/10.1093/sysbio/syt002
    Song, D. (1991) On lynx spiders of the genus Oxyopes (Araneae: Oxyopidae) from China. Sinozoologia 8, 169–181.
    Song, D., Zhu, M. & Chen, J. (1999) The spiders of China. Hebei Science and Technology Publishing House, Shijiazhuang, 640 pp.
    Sukumaran, J. & Knowles, L.L. (2017) Multispecies coalescent delimits structure, not species. Proceedings of the National Academy of Sciences 114, 1607–1612. https://doi.org/10.1073/pnas.1607921114
    Sun, P.-W., Hsiao, C., Pei, K.J.-C., Lin, Y.-H., Chen, M.-T., Chiang, P.-J., Wang, L., Lu, D.-J., Liao, P.-C. & Ju, Y.-T. (2024) Unraveling the interplay between demography and landscape features in shaping connectivity and diversity: Insights from the leopard cat on a subtropical island. Landscape Ecology 39, 99. https://doi.org/10.1007/s10980-024-01894-0
    Talavera, G., Dincă, V. & Vila, R. (2013) Factors affecting species delimitations with the GMYC model: insights from a butterfly survey. Methods in Ecology and Evolution 4, 1101–1110. https://doi.org/10.1111/2041-210X.12107
    Tan, E.P. & Soh, Z. (2022) Biodiversity Record: Lynx spider guarding egg sac on a leaf suspended in mid-air. Nature in Singapore 15, e2022007. https://doi.org/10.26107/NIS-2022-0007
    Tang, G. & Li, S. (2012) Lynx spiders from Xishuangbanna, Yunnan, China (Araneae: Oxyopidae). Zootaxa 3362, 1–42. https://doi.org/10.11646/zootaxa.3362.1.1
    Tautz, D., Arctander, P., Minelli, A., Thomas, R.H. & Vogler, A.P. (2003) A plea for DNA taxonomy. Trends in Ecology & Evolution 18, 70–74. https://doi.org/10.1016/S0169-5347(02)00041-1
    Thorell, T. (1887) Viaggio di L. Fea in Birmania e regioni vicine. II. Primo saggio sui ragni birmani. Annali del Museo civico di storia naturale di Genova 25, 5–417.
    Thorell, T. (1895) Descriptive catalogue of the spiders of Burma based upon the collection made by Eugene W. oates and preserved in the British museum. Longmans, London, 406 pp.
    Thorell, Tord (1891) Spindlar från Nikobarerna och andra delar af södra Asien. Kongliga Svenska Vetenskaps-Akademiens Handlingar 24, 1–149.
    Tikader, B.K. (1965) On some new species of spiders of the family Oxyopidae from India. Proceedings of the Indian Academy of Science 62, 140–144.
    Tikader, B.K. (1970) Spider fauna of Sikkim. Records of the zoological Survey of India 64, 1–83.
    Tikader, B.K. & Biswas, B. (1981) Spider fauna of Calcutta and vicinity: Part-I. Records of the Zoological Survey of India, Occasional Paper 30, 1–149.
    Tobias, J.A., Seddon, N., Spottiswoode, C.N., Pilgrim, J.D., Fishpool, L.D.C. & Collar, N.J. (2010) Quantitative criteria for species delimitation. Ibis 152, 724–746. https://doi.org/10.1111/j.1474-919X.2010.01051.x
    Townsend, V.R. & Felgenhauer, B.E. (1998) The cuticular scales of lynx spiders (Araneae, Oxyopidae). Journal of Morphology 236, 223–231. https://doi.org/10.1002/(SICI)1097-4687(199806)236:3<223::AID-JMOR5>3.0.CO;2-3
    Townsend, V.R. & Felgenhauer, B.E. (1999) Variation in cuticular scales of the lynx spiders of the genus Hamataliwa and other genera (Araneae, Oxyopidae). Canadian Journal of Zoology 77, 1705–1716.
    Townsend, V.R. & Felgenhauer, B.E. (2001) Phylogenetic significance of the morphology of the cuticular scales of the lynx spiders (Araneae: Oxyopidae). Journal of Zoology 253, 309–332. https://doi.org/10.1017/S0952836901000292
    Tsai, M.-S. (2013) A taxonomic study on the family Tetragnathidae (Arachnida: Araneae) of Taiwan (Except for Genus Leucauge). Master Thesis. Department of Life Science, National Taiwan Normal University, 301pp.
    Tseng, Y.-C. (2023) Fine-scale population structure of Aedes aegypti in southern Taiwan inferred by genome-wide SNPs. Master Thesis. Institute of Ecology and Evolutionary Biology, National Taiwan University.
    Urfer, K., Spasojevic, T., Klopfstein, S., Baur, H., Lasut, L. & Kropf, C. (2021) Incongruent molecular and morphological variation in the crab spider Synema globosum (Araneae, Thomisidae) in Europe. ZooKeys 1078, 107–134. https://doi.org/10.3897/zookeys.1078.64116
    Van Der Meer, E., Dullemont, H., Wang, C.-H., Zhang, J.-W., Lin, J.-L., Pei, K.J.-C. & Lai, Y.-C. (2023) Fine-scaled selection of resting and hunting habitat by leopard cats (Prionailurus bengalensis) in a rural human-dominated landscape in Taiwan. Animals 13, 234. https://doi.org/10.3390/ani13020234
    Wandeler, P., Funk, S.M., Largiadèr, C.R., Gloor, S. & Breitenmoser, U. (2003) The city-fox phenomenon: genetic consequences of a recent colonization of urban habitat. Molecular Ecology 12, 647–656. https://doi.org/10.1046/j.1365-294X.2003.01768.x
    Wang, J.-S., Tuanmu, M.-N. & Hung, C.-M. (2021) Effects of artificial light at night on the nest-site selection, reproductive success and behavior of a synanthropic bird. Environmental Pollution 288, 117805. https://doi.org/10.1016/j.envpol.2021.117805
    Wang, Q. & Li, H. (2020) Phylogeny of the superfamily Gelechioidea (Lepidoptera: Obtectomera), with an exploratory application on geometric morphometrics. Zoologica Scripta 49, 307–328. https://doi.org/10.1111/zsc.12407
    Wei, H.-Z. (2003) A taxonomic study on the Lycosidae of Taiwan. Master Thesis. Department of Life Science, National Taiwan Normal University, 92pp.
    Wells, T., Carruthers, T., Muñoz-Rodríguez, P., Sumadijaya, A., Wood, J.R.I. & Scotland, R.W. (2022) Species as a heuristic: reconciling theory and practice. Systematic Biology 71, 1233–1243. https://doi.org/10.1093/sysbio/syab087
    Welton, L.J., Travers, S.L., Siler, C.D. & Brown, R.M. (2014) Integrative taxonomy and phylogeny-based species delimitation of Philippine water monitor lizards (Varanus salvator Complex) with descriptions of two new cryptic species. Zootaxa 3881, 201–227. https://doi.org/10.11646/zootaxa.3881.3.1
    Wheeler, Q.D. (1999) Why the Phylogenetic Species Concept?—Elementary. Journal of Nematology 31, 134–141.
    Wheeler, Q.D. & Platnick, N.I. (2000) The Phylogenetic Species Concept. In: Q. D. Wheeler and R. Meier (Eds), Species concepts and phylogenetic theory: A debate. Columbia University Press, New York, pp. 55–69.
    Wheeler, W.C., Coddington, J.A., Crowley, L.M., Dimitrov, D., Goloboff, P.A., Griswold, C.E., Hormiga, G., Prendini, L., Ramírez, M.J., Sierwald, P., Almeida-Silva, L., Alvarez-Padilla, F., Arnedo, M.A., Benavides Silva, L.R., Benjamin, S.P., Bond, J.E., Grismado, C.J., Hasan, E., Hedin, M., Izquierdo, M.A., Labarque, F.M., Ledford, J., Lopardo, L., Maddison, W.P., Miller, J.A., Piacentini, L.N., Platnick, N.I., Polotow, D., Silva-Dávila, D., Scharff, N., Szűts, T., Ubick, D., Vink, C.J., Wood, H.M. & Zhang, J. (2017) The spider tree of life: phylogeny of Araneae based on target-gene analyses from an extensive taxon sampling. Cladistics 33, 574–616. https://doi.org/10.1111/cla.12182
    Whitcomb, W.H. (1962) Egg sac construction and oviposition of the green lynx spider, Peucetia viridans (Oxyopidae). The Southwestern Naturalist 7, 198–201. https://doi.org/10.2307/3668842
    Whitcomb, W.H. & Eason, R. (1965) The mating behavior of Peucetia viridans (Araneida: Oxyopidae). The Florida Entomologist 48, 163–167.
    Whitcomb, W.H. & Eason, R.R. (1967) Life history and predatory importance of the striped lynx spider (Araneida: Oxyopidae). Journal of the Arkansas Academy of Science 21, 54–58.
    Whiting, M.F., Carpenter, J.C., Wheeler, Q.D. & Wheeler, W.C. (1997) The Strepsiptera problem: phylogeny of the holometabolous insect orders inferred from 18S and 28S ribosomal DNA sequences and morphology. Systematic Biology 46, 1–68. https://doi.org/10.1093/sysbio/46.1.1
    Wiemers, M. & Fiedler, K. (2007) Does the DNA barcoding gap exist? – a case study in blue butterflies (Lepidoptera: Lycaenidae). Frontiers in Zoology 4, 8. https://doi.org/10.1186/1742-9994-4-8
    Wiens, J.J. & Servedio, M.R. (2000) Species delimitation in systematics: inferring diagnostic differences between species. Proceedings of the Royal Society B: Biological Sciences 267, 631–636. https://doi.org/10.1098/rspb.2000.1049
    Wilson, J.D., Zapata, L.V., Barone, M.L., Cotoras, D.D., Poy, D. & Ramírez, M.J. (2021) Geometric morphometrics reveal sister species in sympatry and a cline in genital morphology in a ghost spider genus. Zoologica Scripta 50, 485–499. https://doi.org/10.1111/zsc.12478
    Winchell, K.M., Campbell-Staton, S.C., Losos, J.B., Revell, L.J., Verrelli, B.C. & Geneva, A.J. (2023) Genome-wide parallelism underlies contemporary adaptation in urban lizards. Proceedings of the National Academy of Sciences 120, e2216789120. https://doi.org/10.1073/pnas.2216789120
    Winchell, K.M., Maayan, I., Fredette, J.R. & Revell, L.J. (2018) Linking locomotor performance to morphological shifts in urban lizards. Proceedings of the Royal Society B: Biological Sciences 285, 20180229. https://doi.org/10.1098/rspb.2018.0229
    Winter, D.J. (2012) MMOD : an R library for the calculation of population differentiation statistics. Molecular Ecology Resources 12, 1158–1160. https://doi.org/10.1111/j.1755-0998.2012.03174.x
    World Spider Catalog (2024) World Spider Catalog. Version 25.0. World Spider Catalog. Available from: http://wsc.nmbe.ch (February 10, 2024)
    Xie, L. & Kim, J.-P. (1996) Three new species of the genus Oxypes from China (Araneae: Oxyopidae). Korean Arachnology 12, 33–40.
    Xu, X., Kuntner, M., Bond, J.E., Ono, H., Ho, S.Y.W., Liu, F., Yu, L. & Li, D. (2020) Molecular species delimitation in the primitively segmented spider genus Heptathela endemic to Japanese islands. Molecular Phylogenetics and Evolution 151, 106900. https://doi.org/10.1016/j.ympev.2020.106900
    Xu, X., Liu, F., Chen, J., Li, D. & Kuntner, M. (2015) Integrative taxonomy of the primitively segmented spider genus Ganthela (Araneae: Mesothelae: Liphistiidae): DNA barcoding gap agrees with morphology. Zoological Journal of the Linnean Society 175, 288–306. https://doi.org/10.1111/zoj.12280
    Yaginuma, T. (1960) Spiders of Japan in colour. Hoikusha, Osaka, 186 pp.
    Yang, C.-C. (2016) A taxonomic study on the subfamily Theridiinae (Araneae: Theridiidae) of Taiwan. Master Thesis. Department of Life Science, National Taiwan Normal University, 354pp.
    Yang, Z. (2015) The BPP program for species tree estimation and species delimitation. Current Zoology 61, 854–865. https://doi.org/10.1093/czoolo/61.5.854
    Yang, Z. & Rannala, B. (2017) Bayesian species identification under the multispecies coalescent provides significant improvements to DNA barcoding analyses. Molecular Ecology 26, 3028–3036. https://doi.org/10.1111/mec.14093
    Yin, C.M., Peng, X.J., Yan, H.M., Bao, Y.H., Xu, X., Tang, G., Zhou, Q.S. & Liu, P. (2012) Fauna Hunan: Araneae in Hunan, China. Hunan Science and Technology Press, Changsha, 1590 pp.
    Yu, G., Rao, D., Matsui, M. & Yang, J. (2017) Coalescent-based delimitation outperforms distance-based methods for delineating less divergent species: the case of Kurixalus odontotarsus species group. Scientific Reports 7, 16124. https://doi.org/10.1038/s41598-017-16309-1
    Yu, K.-P., Lo, Y.-Y., Cheng, R.-C., Raven, R.J. & Kuntner, M. (2023) Discovery of a new intertidal trapdoor spider of the genus Idioctis (Araneae: Barychelidae), with a generic range extension to Taiwan. The Journal of Arachnology 51, 238–248. https://doi.org/10.1636/JoA-S-22-020
    Zamani, A., Dal Pos, D., Fric, Z.F., Orfinger, A.B., Scherz, M.D., Bartoňová, A.S. & Gante, H.F. (2022) The future of zoological taxonomy is integrative, not minimalist. Systematics and Biodiversity 20, 1–14. https://doi.org/10.1080/14772000.2022.2063964
    Zelditch, M., Swiderski, D. & Sheets, H.D. (2012) Geometric Morphometrics for Biologists: A Primer. Academic Press, 488 pp.
    Zhang, B.S. & Zhang, F. (2018) Three new species of the spider genus Asceua from Malaysia (Araneae, Zodariidae). ZooKeys 789, 37–49. https://doi.org/10.3897/zookeys.789.24261
    Zhang, J., Kapli, P., Pavlidis, P. & Stamatakis, A. (2013) A general species delimitation method with applications to phylogenetic placements. Bioinformatics 29, 2869–2876. https://doi.org/10.1093/bioinformatics/btt499
    Zhang, J.-X., Zhu, M.-S. & Song, D.-X. (2005) Revision of the spider genus Hamataliwa Keyserling from China (Araneae: Oxyopidae). Zootaxa 1017, 1–17. https://doi.org/10.11646/zootaxa.1017.1.1

    下載圖示
    QR CODE