簡易檢索 / 詳目顯示

研究生: 曾政清
CHENG CHING TSENG
論文名稱: 高中生透過局部推理活動以發展數學證明能力之教學實驗
指導教授: 林福來
學位類別: 碩士
Master
系所名稱: 數學系
Department of Mathematics
論文出版年: 2002
畢業學年度: 91
語文別: 中文
論文頁數: 132
中文關鍵詞: 局部推理數學證明教學實驗看
英文關鍵詞: global reasoning, local reasoning, experimental teaching
論文種類: 學術論文
相關次數: 點閱:270下載:78
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本研究旨在探討高中學生在局部推理實驗教學活動下,其數學證明能力發展的情形。主要研究目的包括有下列兩項 (1) 設計局部推理的教學活動,並因應發展數學局部推理的教學套件(包括偵錯、排序、配對、接龍),以及評估數學證明教學實驗活動的成效。(2) 探討高中學生在數學證明教學實驗活動中認知、情意及態度等特質。
    本研究之研究方法可分為問卷調查法及準實驗研究設計。
    針對本研究之目的,主要的研究結果如下:
    一、本研究教學實驗活動分別在三個高二班級進行,根據前測、後測及延後測所得成績分析顯示,在實驗教學活動後發展數學局部推理能力方面:實驗組一局部推理小組合作學習與實驗組二局部推理較傳統教學對照組有較佳的表現。而在兩個月延後測發展數學證明能力方面:實驗組一局部推理小組合作學習與實驗組二局部推理活動均較傳統教學對照組為佳。
    二、在不同教學法下,局部推理能力的發展與數學證明能力的發展有顯著相關。
    三、在進行實驗教學後在數學論證試題記憶性與數學證明能力推論的學習遷移性方面:實驗組一局部推理小組合作學習有較佳的學習成效。
    四、根據教學回饋問卷顯示在實驗教學後,實驗組一局部推理小組合作學習及實驗組二局部推理活動均較對照組無論是在證明能力自我評估方面或是對數學證明興趣方面均有提昇。
    本研究除對研究結果加以分析討論外,研究者並提出在證明教學活動及未來後續研究發展上的具體建議。

    The purpose of this study was to examine the mathematical global reasoning ability development of senior high school students who participated in the experimental teaching of local reasoning. There are two main goals: (1) to design teaching activities for local reasoning, develop the corresponding sets for teaching activities (including detecting, ordering, matching, solitaires) and evaluate effects of all the activities, and (2) to explore senior high school students’ cognitive characteristics and attitudes in experimental local reasoning teaching activities.
    The methods for this study are questionnaire method and quasi-experimental research design.
    The main findings of this study are:
    1. In this experimental teaching activity, three sophomore classes were divided into three groups: the experimental group A (local reasoning interactive group cooperation), the experimental group B (local reasoning interactive teaching), and the contrastive group (traditional teaching). The pretest, posttest, and delay-posttest scores show that, compared with the contrastive group, the experimental groups have better achievements in local reasoning after the treatment. And the two-month retention scores reveal that the experimental groups also do better in developing mathematical global reasoning ability.
    2. Under different teaching methods, the development of local reasoning and mathematical global reasoning ability are highly related.
    3. After the experimental teaching, the experimental group A do better in terms of mathematic reason question memory and the transfer learning of mathematical reasoning ability.
    4. Findings of the feedback forms show that, after the treatment, the experimental groups have significant improvements in self-evaluation of mathematical reasoning ability and the interests towards reasoning.
    In addition to the analysis of and discussions on the findings, the researcher also provides suggestions for teaching reasoning and for the follow-up researches.

    第一章 緒論………………………………….……………..……...1 第一節 研究動機…………………………………………………..1 第二節 研究目的與問題…………………..……………………….5 第三節 名詞界定………………………………………………….6 第二章 文獻探討……………………….……………………….12 第一節 數學證明的本質………….…………………….12 第二節 數學證明教學…………….……………..……….17 第三節 數學局部推理證題思維……………………………...21 第四節 情意態度與數學證明…………………….……….24 第五節 高中學生數學證明能力之培養… ……….……. 29 第三章 研究方法………………………………………………….34 第一節 研究架構………....………………………………… .34 第二節 研究樣本…………………………………………..….36 第三節 研究工具…………………………………………..37 第四節 研究過程…………………………………………….44 第五節 資料統計分析………………………………………. 48 第六節 研究限制……………………………………………48 第四章 資料分析 …………………………………….………50 第一節 數學證明學習經驗調查………….…………………..50 第二節 數學證明省思問卷………………………………………54 第三節 數學證明教學實驗部份……………………………58 第四節 數學證明教學回饋問卷………………………………….68第五章 綜合討論…………….………………………,,,,………….72 第一節 實驗教學成效分析………………………………….72 第二節 數學形式證明能力發展情形…………………..………….74 第三節 教學實驗心得與省思…………………………………….79 第四節 教學實驗中學生的特質…………………………………..82 第六章 結論與建議………………………………………………..86 第一節 結論……………………………………………………….86 第二節 建議.……………………………………………………… 87 參考文獻…….………………………………………………..91

    一、 中文部份:
    左平、沈孝平(民88)譯。幾何學中的證明。台北:九章出版社。
    王郁華(民83)。台灣南區中學數學科教師信念之研究。國立高雄師範大學數學研究所碩士論文。
    李白飛、林福來、林光賢(民82)。大學入學考試數學科試題分析與命題研究(三)。大學入學考試中心。
    李宜芬(民91)。國三學生突破因附圖造成之論證障礙的學習歷程研究。國立台灣師範大學數學研究所碩士論文。
    吳慧真(民86)。幾何證明探究教學之研究。國立台灣師範大學數學研究所碩士論文。
    吳水利(民90)。高中學生夾擠定理非形式化至形式化論證的思維曲線。
    台北市第二屆教育行動研究成果發表會。
    林永發(民87)。在動態幾何環景中培養命題視擬題能力之研究。國立台灣師範大學數學研究所碩士論文。
    林志忠(民86)。後設解題交互教學策略對資優兒童問題解決能力影響之研究。國立台灣師範大學特殊教育研究所碩士論文。
    林政輝(民91)。國中生討論數樣式關係時表達理由能力之成長探究。國立台灣師範大學數學研究所碩士論文。
    林清山(民88)。心理與教育統計學。台北:東華書局。
    林福來(民84)。數學證明的瞭解(Ⅱ)。行政院國家科學研究委員會專題研究計劃期末報告。
    林福來、鄭英豪(民86)。反證法論證原理之探究性教學。科學教育學刊第五卷第四期。
    林福來(民90)。青少年的數學概念學習研究—子計劃十四:青少年數學論證能力發展研究。行政院國家科學研究委員會專題研究計劃期中報告。
    林福來、李恭晴、陳冒海、徐正梅(民90)。高級中學數學課本1~4冊。台南:南一書局。
    林福來、李恭晴、陳冒海、徐正梅、邱顯義、曾政清(民90)。高級中學幾何學下冊。台南:南一書局。
    林福來、曹亮吉、許志農、鄭英豪、陳創義、陳毅豪、張海潮、吳家怡、朱惠文(民90)。數學考科之規劃研究報告(數學科)。大學入學考試中心。
    洪萬生(民80)。孔子與數學。台北:明文書局。
    胡炳生(民86)。數學解題思維方法。台北:九章出版社。
    桂慶中、施頂清(民89)。從合作學習(小組討論)談閱讀理解能力之提昇。中等教育第51卷第5期,65-73。
    陳英娥(民86)。數學臆測:思維與能力之研究。國立台灣師範大學科學教育研究所博士論文。
    陳姿妍(民85)。中學生處理有輔助線需求之幾何證明的錯誤分析。國立台灣師範大學數學研究所碩士論文。
    曹亮吉(民85)。阿草的葫蘆。台北:遠哲科學教育基金會出版
    曹亮吉、吳家怡、賴恆隆、林佳蓉、吳慧真(民85)。指定科目考試規劃研究報告(數學科)。大學入學考試中心。
    溫明麗(民91)。皮亞傑與批判性思考教學。台北:洪葉文化有限公司。
    詹玉貞(民86)。波利亞的解題步驟對國中數學資優生學習幾證明成效的研究。國立台灣師範大學科學教育研究所碩士論文。
    詹志禹(民91)。建構論-理論基礎與教育應用。台北:正中書局。
    劉貞宜(民89)。數學資優生的解題歷程分析。國立台灣師範大學特殊教育研究所碩士論文。
    劉錫麒(民86)。數學思考教學研究。台北:師大書苑。
    蔡聰明(民89)。數學的發現趣談。台北:三民書局。
    鄭昭明(民82)。認知心理學。台北:桂冠圖書公司。
    蕭龍生(民82)。數學學習與認知。國立高雄師範大學特殊教育中心特殊教育叢書第三十三輯。
    蕭文強(民87)。數學證明。新竹:凡異。
    二、 英文部份:
    Avital,S.&Hansen,R.T.(1976). Mathematical Inducation in the Classroom.Educational Studies in Mathematics,7,399-411.
    Alibert,D.&Thomas,M(1991).Research on mathematical proof. In D.Tall (ed.),Advanced Mathematical Thinking.215-230
    Balacheff,N(1988).Aspects of proof in pupils’ practice of school mathematics in Pimm,d.(Ed) ,Mathematics teacher and children .London:Hodder &Stoughton.
    Baker,J.(1996). Students’ difficulties with proof by Mathematics Induction Paper presented at the Annual Metting of the American Education Research Association(New York,NY,April 8-12,1996) ED:369931
    Bishop J.(2000).linear geometric number patterns:Middle school student’ strategies. Mathematics Education Research Journal,12(2),107-126.
    Borasi,R.(1992).Learning mathematics trough inquiry.Portsmouth NH:Heinemann Educational Books,inc.
    Case,R.(1978). The Developmentally Based Theorey and Technology of instruction.Review of Educational Research,pp439-463.
    Davis,R.B(1986) Algebra in elementary schools. Proceedings of the 5th In ternational Cogress on Mathematical Education ,Birkhauser,Bosten.
    Dreyfus,T.(1991). Adnanced Mathematical Thinking Processes.In D.Tall(Ed) Adnanced Mathematical Thinking (pp.25-53).
    Netherlands:Kluwer Academic Publishers
    Duval,R.(1998).Geometry from a cognitive of view .Perspective on the Teaching of Geometry for the 21st century An ICME Study.(pp37-52)
    Hanna,G.(1989).Moore than formal proof. For the learning of mathematics 9,20-30.
    Hanna,G.(1991). Mathematical Proof .In D. Tall(Ed.), Advanced Mathematical Thinking ,54-61. Netherlands:Kluwer Academic Publishers.
    Healy,L.&Hoyles,C.(1998).Justifying and proving in school mathematics. Teacher Report in The National Wide Survey ,Institute of Education, University of London.
    Healy,L.&Hoyles,C.(2000).A Study of Proof Conceptions in Algebra. Journal for Research in Mathematics Education ,31(4),396-428
    Hoffer,A.(1981).Geometry is more than proof. Mathematics teacher, 74(1),11-18
    Hoyles,c.(1997).the Curricular Shaping Students’ Approaches to Proof.For the Learning of Mathematics,17(1),7-16
    Jaworski,B.(1996).Investigating Mathematics Teaching:A Constructivist Enquiry.London Washington,D.C. The Falmer press
    Krutetskii,V.A.(1976).The Psychology of mathematical abilities in school children Chicago:University of Chicago Press.
    Leikin,R&Zaslavsky,O(1999).Mathematics Teacher,92 (3), 240-246
    Mayer,R.E.(1992).Thinking problem solving,cognition.New york:Freeman
    Miwa T.(2001) Crucial Issues in Teaching of Symbolic Expressions. Tsukuba Journal of Educational Study in Mathematics,vol.2,1-23.
    Miyazaki,M.(2000).Levels of proof in /ower Secondary school Mathematics-As Steps from ad inductive Proof to an Algebraic Demonstration.Educational Studies in Mathematics,41,47-68.
    Moore R.C.(1994). Making the Transition to Formal Proof. Educational Studies in Mathematics,27,249-166.
    NCTM.(1989).Curriculum and Evaluation Standards for school Mathematics. Reston, Va:The Council
    Polya,G.(1945).How to solve it.Princeton,New Jersy:Princeton University Press.
    Silver,E.A.(1987).Foundations of cognitive theory and research for mathematics problem-solving instruction. In A,H, Schoenfeld(Ed.),C education Cognitive science and mathematics. American:Lawrence Erlbum Associates.
    Schoenfeld,A.H.(1985). Mathematical problem solving. Orlando,FL:Academic press.
    Sfard,A.(1991). On The Dual Nature of Mathematics Concepts: Reflection on processes and Objects as Different Sides of The Same Coin.Educational Studies in Mathematics.
    Skemp,R.R(1982). Communicating mathematical:surface structures and deep structures. In Skemp ,R.R.(Ed.),Visible language.
    Stevens,R.J.,Slavin,R.E.,&Farnish,A.M.(1991).The effects of Cooperative learning and direct instruction in reading comprehension strategies on mainidea indentification ,Journal of Educational Psychology 83(1),8-16.
    Tall,D.(1989).The nature of mathematical proof. Mathematics Teaching, 127,28-31.
    Tall,D.(1991).The psychology of advanced mathematical thinking.In D.Tall,.(ed),Advanced Mathematica lThinking. The Netherlands, Kluwer Academic Publishers.
    Thurston,W.P(1994).On proof and progress in mathematics. Bulletin of the American mathematical Society.30(2),161-177
    Tsamir,P&Sheffer,R.(2000).Concrete and Formal Arguments: The Case of Division by Zero. Mathematics Education Research Journal,12(2), 92-106
    Vinner,s.(1991).The role of definitions in teaching and learning of mathematics. In..D.Tall.(Ed.),Advanced mathematical thinking (65-79).Dordrecht, Netherlands :Kluwer Academic Published.
    Vygotsky,L.S.(1965) Thought and language (E.Hanfmann and G.Vakar,eds and trans.) Cambridge,MA:MIT Press.
    Warning,S.,Orton A.&Roper,T.(1998). An experiment in developing proof through pattern. Proceeding of the 22nd Conference of the international Group for the Psychology of Mathematics Education. 4,161-168.
    Yackle,E.&Cobb,P.(1996) Sociomathematical norms,Argumentation,and autonomy mathematics, Journal for Research in Mathematics Education ,27(4).

    QR CODE