研究生: |
黃振毓 Huang, Zhen Yu |
---|---|
論文名稱: |
利用繞射光柵設計可透光的分光式平面太陽能集光器 A Light-Transmissible Spectroscopic Planar Solar Concentrator Using Diffraction Gratings |
指導教授: |
鄧敦建
Teng, Tun-Chien |
口試委員: |
鄧敦建
Teng, Tun-Chien 鄭慶民 Jheng, Cing-Min 陳建志 Chen, Jian-Jhih |
口試日期: | 2022/08/02 |
學位類別: |
碩士 Master |
系所名稱: |
機電工程學系 Department of Mechatronic Engineering |
論文出版年: | 2022 |
畢業學年度: | 110 |
語文別: | 中文 |
論文頁數: | 102 |
中文關鍵詞: | 太陽能集光器 、繞射光柵 |
英文關鍵詞: | Solar concentrator, Diffraction grating |
研究方法: | 實驗設計法 、 準實驗設計法 、 調查研究 、 主題分析 |
DOI URL: | http://doi.org/10.6345/NTNU202201270 |
論文種類: | 學術論文 |
相關次數: | 點閱:184 下載:0 |
分享至: |
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
本論文提出一種可透光的分光式太陽能集光器,設計不同周期的傾斜梯型光柵和分層光柵分別做為第一段和第二段偏折光結構。第一段偏折光結構利用光柵與全內反射將入射波長為 400~600nm 的太陽光偏折並耦合到下方的楔型導光板(Tapered Light Guide Plate, TLGP)中,再經由內部全反射將該光線收集到 TLGP 端面。第二段偏折光結構利用光柵與全內反射將穿透第一段偏折光結構的太陽光中入射波長為 600~900nm 的太陽光耦合並偏折到下方的楔型導光板中,再經由內部全反射將該光線收集到 TLGP 端面。並利用嚴格耦合波分析(Rigorous Cupled-Wave-Analysis, RCWA)對不同類型的光柵結構進行優化,使得一階繞射效率最大化。經過模擬最佳化後,最佳模型的第一、第二段光柵繞射效率分別達 83%和 88%。最後在導光板尾端附加一個額外的複合拋物面聚光器(Compound Parabolic Concentrator, CPC)以進一步提高輸出光線的光線幾何集中倍率達 7.6。在假設模型位處北緯 25.05 度的台北、朝南安置的情況下,以單軸轉動追跡太陽每日 8:00 到 16:00 東昇西落,針對 400~900 nm 的太陽光譜,整體系統的全年平均效率為 70%。對於漫射可見光的整體透光率約 27%。
In this study, a light-transmissible spectroscopic solar concentrator is proposed. Using slanted trapezoidal grating and layered grating with different periods are designed as the first and second transmissive-deflection components respectively. The first component deflects the incident sunlight with wavelengths of 400-600 nm at a large angle into the Tapered Light Guide Plate (TLGP) below, and then the light propagates to the TLGP end face through internal total reflection. The second component deflects the incident sunlight with wavelength of 600-900 nm that passes the first component at a large angle into the TLGP below, and then the light propagates to the TLGP end face through internal total reflection. Different types of grating structures are optimized by Rigorous Coupled-WaveAnalysis (RCWA) to maximize the first-order diffraction efficiency. After optimization, the diffraction efficiencies of the first and second gratings of the best model are 83% and 88%, respectively. Finally, an additional optical element such as a compound parabolic concentrator (CPC) is attached to the end of the light guide plate to further increase the geometric concentration ratio of the output light up to 7.6. Assuming that the model is located in Taipei at 25.05 degrees north latitude and is placed tilting to the south for tracing the sun from 8:00 to 16:00 every day by uniaxial rotation, for the solar spectrum of 400~900 nm, the average annual efficiency is 70%, and the overall transmittance for ambient diffuse light is about 27%.
1. 旭陽能源科技有限公司 平板式太陽能熱水器https://syuyang.com.tw/product/%E5%B9%B3%E6%9D%BF%E5%BC%8F%E5%A4%AA%E9%99%BD%E8%83%BD%E7%86%B1%E6%B0%B4%E5%99%A8/
2. 尚億新能源 太陽能電池發電原理
http://www.sune-newenergy.com.tw/web/index.php/devicemenu
3. Jason H. Karp*, Eric J. Tremblay, Joseph E. Ford, “Planar micro-optic solar concentrator” Optics Express, Volume 18, No.2, Pages 1122-1133(2010)
4. USA.Gov - BLM - BUREAU OF LAND MANAGEMENT http://www.ca.blm.gov/cdd/alternative_energy.html
5. Si Kuan Thio, Sung-Yong Park*, “Dispersive Optical Systems for Highly-Concentrated Solar Spectrum Splitting: Concept, Design, and Performance Analyses”Energies, Volume 12, No.24, 4719(2019)
6. 搶攻台灣第一型電業太陽能電廠盛齊綠能新推優化器和特高壓監控系統
https://www.storm.mg/localarticle/3541362
7. A. Luque, S. Hegedus, “Handbook of Photovoltaic Science and Engineering”, John Wiley & Sons(2003)
8. Palmer, C. and Loewen, E. , “Diffraction grating handbook”, chapter 02, N.Y.: Newport Corporation, Rochester(2005)
9. N. Yu. et al., "Light Propagation with Phase Discontinuities: Generalized Laws of Reflection and Refraction", Science 334, Pages 333-337 (2011).
10. International Electrotechnical Commission (IEC): International Electrotechnical Vocabulary. ref. 845-21-060, illuminance
11. "Base unit definitions: Candela". The NIST Reference on Constants, Units, and Uncertainty. Retrieved 8 February 2008.
12. "Luminance". Lighting Design Glossary. Retrieved Apr 13, 2009.
13. Max Born; Emil Wolf. Principles of Optics: Electromagnetic Theory of Propagation, Interference and Diffraction of Light (7th Edition) (Hardcover). Cambridge University Press. October 13, 1999: 334 [2010-01-13]. ISBN 0521642221
14. Rong Wu*, Mingying Sun, Shenlei Zhou, Jiangqiang Zhu, “Understanding and optimizing diffraction gratings by the blazing analysis of total internal reflection” Journal of the Optical Society of America A, Volume 38, No.4, Pages 542-546,(2021)
15. T. M. de Jong , D. K. G. de Boer, C. W. M. Bastiaansen, “Diffractive flat panel solar concentrators of a novel design” Opt. Express A1138, 24, No. 14 (2016).
16. Tanant Waritanant a, Sakoolkan Boonruang b, Te-Yuan Chung a*, “High angular tolerance thin profile solar concentrators designed using a wedge prism and diffraction grating” Solar Energy,Volume 87, Pages 35-41(2013).
17. Renewable and Sustainable Energy Reviews 60 (2016)
18. Ameen Elikkottil, Mohammed H.Tahersima et al. , “A Spectrally Tunable Dielectric Subwavelength Grating based Broadband Planar Light Concentrator” Scientific Reports, Volume 9, 11723(2019)
19. Jierong Cheng, Sandeep Inampudi et al., “Dielectric metasurfaces in transmission and reflection modes approaching and beyond bandwidth of conventional blazed grating” Optics Express, Volume 26, No.10, Pages 12547-12557 (2018)
20. Ashutosh Patri, Stephane Ke ́na-Cohen*, Christophe Caloz, “Large-Angle, Broadband, and Multifunctional Directive Waveguide Scatterer Gratings”ACS Photonics, Volume 6, Pages 3298-3305 (2019)
21. G. J. Swanson, “Binary optics technology: The theory and design of multi-level diffractive optical elements,” MIT Technical Report 854 (1989).
22. B. Bai, J. Laukkanen, M. Kuittinen, and S. Siitonen, “Optimization of nonbinary slanted surface-relief gratings as high-efficiency broadband couplers for light guides,” Appl. Opt. 49(28), 5454–5464 (2010).