簡易檢索 / 詳目顯示

研究生: 李泓褕
LI,HUNG-YU
論文名稱: 行動裝置上以軟體無線電為基礎的室內定位研究
SDR-based Indoor Localization on Mobile Devices
指導教授: 陳伶志
Chen, Ling-Jyh
學位類別: 碩士
Master
系所名稱: 資訊工程學系
Department of Computer Science and Information Engineering
論文出版年: 2016
畢業學年度: 104
語文別: 中文
論文頁數: 51
中文關鍵詞: 室內定位調頻數位視訊廣播
英文關鍵詞: indoor localization, FM, DVB-T
DOI URL: https://doi.org/10.6345/NTNU202203715
論文種類: 學術論文
相關次數: 點閱:140下載:1
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 精確的室內定位已經提出了很多技術,基於Wi-Fi,藍牙,ZigBee和紅外線技術,以及眾多的室內定位解決方案。這些訊號的頻率較高,穿透的能力較弱,並且會因為一些障礙物如桌子,櫃子等傢俱存在的影響。此外,這些訊號需要額外的基礎建設才可使用。 我們利用FM和DVB-T作為來源,因為頻率較低,對人的存在,多路徑衰退等影響沒有那麼顯著,而且這兩個訊號隨時間變化不大。並且研究如何在手機上使用這兩個訊號來進行室內定位,讓我們的方法增加了實用性,在確認完手機是可以實作後,我們進一步去探討在跨平台室內定位的情況,因為目前有太多種手機或天線,我們希望使用不同機型,不同天線或者是電腦都能夠使用我們系統做室內定位,在進行幾個連續的實驗結果與分析後,驗證了我們克服以前使用其他訊號的問題,並且完成了在不同平台,不同機型或不同天線的跨平台室內定位系統。加上我們考慮時間的影響,使用不同訓練數據的資料建立資料庫做室內定位,比較手機和DVB-T天線的精確度。

    第一章 介紹..........................................................................................6 第二章 相關研究探討..........................................................................9 2-1 Wi-Fi 訊號紋定位法...............................................................9 2-2 FM訊號紋定位法..................................................................10 2-3 其他訊號紋定位法................................................................11 2-4 混合訊號紋定位法................................................................12 第三章 方法.............................................................................14 3-1 實驗設置......................................................................15 3-2 資料收集階段...............................................................16 3-3 定位階段......................................................................17 第四章 手機與電腦的比較........................................................18 4-1 手機平均與電腦的比較.................................................19 4-2 窗戶的影響……………………...…….…….………........20 第五章 手機交叉比較................................................................22 5-1 相同機型和相同天線.....................................................22 5-2 相同機型和不同天線.....................................................23 5-3 不同機型和相同天線.....................................................25 第六章 跨平台定位分析...............................................................27 6-1 RSSI 的比較.................................................................28 6-2 相同機型和相同天線.....................................................29 6-3 相同機型和不同天線.....................................................32 6-4 不同機型和相同天線.....................................................35 6-5 不同機型和不同天線.....................................................37 6-6 電腦定位手機................................................................41   第七章 討論.................................................................................44 第八章 結論與未來工作.................................................................46 參考著作........................................................................................47

    . [1] M. Azizyan, I. Constandache, and R. Roy Choudhury. Surroundsense: mobile phone localization via ambience fingerprinting. In Proceedings of the 15th annual international conference on Mobile computing and networking, pages 261–272. ACM, 2009.
    . [2] M. S. Bargh and R. de Groote. Indoor localization based on response rate of bluetooth inquiries. In Proceedings of the first ACM international workshop on Mobile entity localization and tracking in GPS-less environments, pages 49–54. ACM, 2008. 

    . [3] Y.-T. Chan, W.-Y. Tsui, H.-C. So, and P.-c. Ching. Time-of-arrival based localization under nlos conditions. Vehicular Technology, IEEE Transactions on, 55(1):17–24, 2006. 

    . [4] Y. Chen, D. Lymberopoulos, J. Liu, and B. Priyantha. Fm-based indoor localization. In Proceedings of the 10th international conference on Mobile systems, applications, and services, pages 169–182. ACM, 2012. 

    . [5] S.-H. Fang and T.-N. Lin. Cooperative multi-radio localization in heterogeneous wireless networks. Wireless Communications, IEEE Transactions on, 9(5):1547– 1551, 2010. 

    . [6] A. Jime ́nez, F. Zampella, and F. Seco. Light-matching: A new signal of opportunity for pedestrian indoor navigation. In Indoor Positioning and Indoor 
Navigation (IPIN), 2013 International Conference on, pages 1–10. IEEE, 2013. 

    . [7] R. Klukas and M. Fattouche. Line-of-sight angle of arrival estimation in the outdoor multipath environment. Vehicular Technology, IEEE Transactions on, 
47(1):342–351, 1998. 

    . [8] S. Kotwal, S. Verma, S. Suryansh, and A. Sharma. Region based collaborative 
angle of arrival localization for wireless sensor networks with maximum range in- formation. In Computational Intelligence and Communication Networks (CICN), 2010 International Conference on, pages 301–307. IEEE, 2010. 

    . [9] Y.-S. Kuo, P. Pannuto, K.-J. Hsiao, and P. Dutta. Luxapose: Indoor positioning with mobile phones and visible light. In Proceedings of the 20th Annual International Conference on Mobile Computing and Networking, MobiCom ’14, pages 447–458, New York, NY, USA, 2014. ACM. 

    . [10] A. Matic, A. Papliatseyeu, V. Osmani, and O. Mayora-Ibarra. Tuning to your position: Fm radio based indoor localization with spontaneous recalibration. In Pervasive Computing and Communications (PerCom), 2010 IEEE International Conference on, pages 153–161. IEEE, 2010. 

    . [11] A. Popleteev, V. Osmani, and O. Mayora. Investigation of indoor localization with ambient fm radio stations. In Pervasive Computing and Communications (PerCom), 2012 IEEE International Conference on, pages 171–179. IEEE, 2012. 

    . [12] G. I. Wassi, C. Despins, D. Grenier, and C. Nerguizian. Indoor location using 
received signal strength of ieee 802.11 b access point. In Electrical and Computer 
Engineering, 2005. Canadian Conference on, pages 1367–1370. IEEE, 2005. 

    . [13] Shan-Ho Yang , Yao-Hua Ho , Ling-Jyh Chen .Indoor Localization using FM and DVB-T Signals .
    . [14 ] Kartik Muralidharan†, Azeem Javed Khan§, Archan Misra†,
Rajesh Krishna Balan†, Sharad Agarwal‡
.Barometric Phone Sensors – More Hype Than Hope! ACM HotMobile’14, February 26–27, 2014, Santa Barbara, CA, USA. Copyright 2014 ACM 978-1-4503-2742-8 ...$15.00.
    . [15] M. Steve, S. Dimitri, and Hoernchen. rtl-sdr http://sdr.osmocom.org/trac/wiki/rtl- sdr. 

    . [16] S. P. Tarzia, P. A. Dinda, R. P. Dick, and G. Memik. Indoor localization without infrastructure using the acoustic background spectrum. In Proceedings of the 9th international conference on Mobile systems, applications, and services, pages 155–168. ACM, 2011. 

    . [17] A. Varshavsky, E. de Lara, J. Hightower, A. LaMarca, and V. Otsason. Gsm indoor localization. Pervasive and Mobile Computing, 3(6):698–720, 2007. 

    . [18] H. Liu, H. Darabi, P. Banerjee, and J. Liu. Survey of wireless indoor positioning techniques and systems. Systems, Man, and Cybernetics, Part C: Applications and Reviews, IEEE Transactions on, 37(6):1067–1080, 2007. 

    . [19] R. Peng and M. L. Sichitiu. Angle of arrival localization for wireless sensor net- 
works. In Sensor and Ad Hoc Communications and Networks, 2006. SECON’06. 2006 3rd Annual IEEE Communications Society on, volume 1, pages 374–382. IEEE, 2006. 

    . [20] S. Sen, B. Radunovic, R. R. Choudhury, and T. Minka. You are facing the mona lisa: spot localization using phy layer information. In Proceedings of the 10th international conference on Mobile systems, applications, and services, pages 183–196. ACM, 2012. 

    . [21] P. Bahl and V. N. Padmanabhan. Radar: An in-building rf-based user location and tracking system. In INFOCOM 2000. Nineteenth Annual Joint Conference of the IEEE Computer and Communications Societies. Proceedings. IEEE, volume 2, pages 775–784. IEEE, 2000. 

    . [22] K. Chintalapudi, A. Padmanabha Iyer, and V. N. Padmanabhan. Indoor local- ization without the pain. In Proceedings of the sixteenth annual international conference on Mobile computing and networking, pages 173–184. ACM, 2010.
    . [23] Yafan Zhang* and Kensall D. Wise . A HIGH-ACCURACY MULTI-ELEMENT SILICON BAROMETRIC PRESSURE SENSOR . The 8th InternationalConferenceon Solid-state Sensors and Actuators, and EurosensorsIX. Stockholm, Sweden, June 25-29, 1995
    . [24] Nishkam Ravi and Liviu Iftode
 . FiatLux: Fingerprinting Rooms Using Light Intensity. In: Pervasive (2007)
    . [25] Jayakorn Vongkulbhisal,1 Bhume Chantaramolee,1 Yan Zhao,1 and Waleed S. Mohammed2
. A FINGERPRINTING-BASED INDOOR LOCALIZATION SYSTEM USING INTENSITY MODULATION OF LIGHT EMITTING DIODES . MICROWAVE AND OPTICAL TECHNOLOGY LETTERS / Vol. 54, No. 5, May 2012
    . [26] Soo-Yong Jung, Swook Hann, and Chang-Soo Park, Member, IEEE . TDOA-Based Optical Wireless Indoor Localization Using LED Ceiling Lamps . IEEE Transactions on Consumer Electronics, Vol. 57, No. 4, November 2011
    . [27] Anna Maria Vegni∗, and Mauro Biagi
. An Indoor Localization Algorithm in a Small-Cell LED-based Lighting System . 2012 INTERNATIONAL CONFERENCE ON INDOOR POSITIONING AND INDOOR NAVIGATION, 13-15TH NOVEMBER 2012
    . [28] Sungro Yoon†, Kyunghan Lee◦, and Injong Rhee . FM-based Indoor Localization via Automatic Fingerprint DB Construction and Matching . MobiSys’13, June 25-28, 2013, Taipei, Taiwan

    . [29] P. Bahl and V. N. Padmanabhan. Radar: An in-building rf-based user location and tracking system. In INFOCOM 2000. Nineteenth Annual Joint Conference of the IEEE Computer and Communications Societies. Proceedings. IEEE, volume 2, pages 775–784. IEEE, 2000. 

    . [30] K. Chintalapudi, A. Padmanabha Iyer, and V. N. Padmanabhan. Indoor local- ization without the pain. In Proceedings of the sixteenth annual international conference on Mobile computing and networking, pages 173–184. ACM, 2010.

    下載圖示
    QR CODE