研究生: |
孫沛煒 Sun, Pei-Wei |
---|---|
論文名稱: |
錐果櫟的遺傳-環境-表現型相關性研究 Genomics- environment-phenotype association study of Quercus longinux |
指導教授: |
廖培鈞
Liao, Pei-Chun |
口試委員: |
廖培鈞
Liao, Pei-Chun 黃士穎 Hwang, Shih-Ying 江友中 Chiang, Yu-Chung |
口試日期: | 2022/07/19 |
學位類別: |
碩士 Master |
系所名稱: |
生命科學系 Department of Life Science |
論文出版年: | 2023 |
畢業學年度: | 111 |
語文別: | 英文 |
論文頁數: | 90 |
中文關鍵詞: | 氣候變化 、族群歷史 、殼斗科 、遺傳脆弱性 、地景遺傳學 、局部適應 、形態學 、自然選擇 、櫟屬 |
英文關鍵詞: | climate change, demographic history, Fagaceae, genetic vulnerability, landscape genetics, local adaptation, morphology, natural selection, Quercus |
研究方法: | 調查研究 |
DOI URL: | http://doi.org/10.6345/NTNU202300079 |
論文種類: | 學術論文 |
相關次數: | 點閱:107 下載:0 |
分享至: |
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
環境會顯著地影響樹木的族群歷史 (demographic history) 與遺傳特徵。研究影響族群分佈、遺傳多樣性、局部適應 (local adaptation)、與棲位分化的因子在生物學當中是至關重要的議題。尤其對於在生態系統當中具有重要角色的森林樹木來說,釐清局部適應與氣候變遷衝擊的關聯對於保育及森林管理有關鍵性的功能。在本論文中,我使用錐果櫟 (Quercus longinux) 作為研究物種,以簡化基因組測序 (RAD-Seq) 建構的單核苷酸多態性 (SNPs) 及葉片特徵來探討在異質性棲地間的族群遺傳、棲位分化、和形態變異等議題。依據族群歷史分析的結果,錐果櫟的族群大小變化和基因交流與更新世 (Pleistocene) 的氣候波動有關。由於末次盛冰期 (LGM) 之後氣候變得更加暖活和濕潤,錐果櫟族群在間冰期經歷了族群擴張和更頻繁的基因交流。錐果櫟族群被發現有向北的不對稱基因交流,可能是開花季節時盛行的西南風或冰河歷史使台灣南部族群有較大的族群數量所造成。使用現在的環境因素,地勢 (topology) 造成的阻礙被認為是藉由阻礙種子或花粉的基因交流而引發遺傳分化最重要的因子。高海拔山區被認為是錐果櫟進行基因交流的重要障礙。然而,從適應的角度來看,土壤和氣候相關因子是影響環境相關天擇 (environment-associated selection) 最重要的因子。季節性季風帶來的降水變化和緯度及海拔造成的溫差可能造成局部適應。我也偵測到環境相關天擇的信號和非生物壓力反應(包括乾旱和霜凍)相關功能的基因有關。除遺傳結構外,葉片形態性狀的變異還受土壤和氣候相關因素的影響,而水分可及性的因子是影響葉片個別性狀最重要的環境因素。最後,從未來脆弱性 (future vulnerability) 的預測來看,面對氣候變化,台灣北部的錐果櫟族群可能因大量增的冬季降水而產生適應不良。冬季降水的增加可能會改變物候並且進一步降低基因交流的效率和遺傳多樣性,這些都會對錐果櫟在未來的存續和適應產生有害影響。輔助性基因交流 (assisted gene flow) 將是可能的保育措施之一,但應在具備足夠背景知識的情況下進行,以避免對錐果櫟族群的適應造成意外後果。
The demographic history and genetic architecture of tree species are noticeably affected by environments. Studying the factors influencing the current distribution, genetic diversity, local adaptation, and niche differentiation are important issues in biology. For forest tree species with important roles in ecosystems, entangling the relationship between local adaptation and vulnerability to future climate change is particularly essential for conservation and forest management. In this thesis, I used Quercus longinux to investigate the issues of population genetics, niche differentiation, and morphological variation across heterogenous habitats with RAD-seq derived SNPs and leaf morphological traits. Results from demographic history demonstrated that population fluctuation and gene flow of Q. longinux were related to Pleistocene climate oscillations. Populations experienced expansion and enhanced gene flow in the interglacial periods with warmer and moister climates after Last glacial maximum (LGM). A northward asymmetric gene flow was also uncovered, which may result from the southwest wind in flowering seasons or larger population abundance in southern Taiwan contributing to glacial-interglacial history. Using current environmental factors, topological resistance was identified as the most profound factor that initiated genetic differentiation through hampering seed or pollen-mediated gene flow. Mountainous regions with high elevation were revealed as significant barriers to gene flow in Q. longinux. Nevertheless, from the perspective of the adaptive process, soil and climate-related factors were the most important variables affecting environment-driven selection. Precipitation variation brought by seasonal monsoons and temperature differences resulting from latitude and elevation may trigger local adaptation. Signals of environment-associated selection were found to be linked to genes with the function of response to abiotic stress including drought and frosty. Aside from genetic architecture, variation of leaf morphological traits was also affected by soil, climate-related factors and water-availability-relevant variables were the most critical environmental factors shaping single leaf traits. Finally, from the prediction of future vulnerability, populations in northern Taiwan may have the highest risk of maladaptation with respect to extremely increased winter precipitation in the face of climate change. Increased winter precipitation may alter the phenology and further reduced the efficiency of gene flow across populations and reduce genetic diversity, which all have deleterious impacts on the persistence and adaptation of Q. longinux populations to future conditions. Assisted gene flow will be one of the potential conservational practices, but it should be conducted with sufficient background knowledge to avoid unexpected consequences on populational fitness.
Abdelaziz, M., Muñoz-Pajares, A. J., Berbel, M., García-Muñoz, A., Gómez, J. M., & Perfectti, F. (2021). Asymmetric reproductive barriers and gene flow promote the rise of a stable hybrid zone in the Mediterranean high mountain. Frontiers in plant science, 12.
Abdessalem, A. B., Dervilis, N., Wagg, D., & Worden, K. (2018). Model selection and parameter estimation in structural dynamics using approximate Bayesian computation. Mechanical Systems and Signal Processing, 99, 306-325.
Abràmoff, M. D., Magalhães, P. J., & Ram, S. J. (2004). Image processing with ImageJ. Biophotonics international, 11(7), 36-42.
Aguirre‐Liguori, J. A., Gaut, B. S., Jaramillo‐Correa, J. P., Tenaillon, M. I., Montes‐Hernández, S., García‐Oliva, F., . . . Eguiarte, L. E. (2019). Divergence with gene flow is driven by local adaptation to temperature and soil phosphorus concentration in teosinte subspecies (Zea mays parviglumis and Zea mays mexicana). Molecular Ecology, 28(11), 2814-2830.
Aitken, S. N., & Bemmels, J. B. (2016). Time to get moving: assisted gene flow of forest trees. Evolutionary Applications, 9(1), 271-290.
Aitken, S. N., & Whitlock, M. C. (2013). Assisted gene flow to facilitate local adaptation to climate change. Annual review of ecology, evolution, and systematics, 44, 367-388.
Aitken, S. N., Yeaman, S., Holliday, J. A., Wang, T., & Curtis‐McLane, S. (2008). Adaptation, migration or extirpation: climate change outcomes for tree populations. Evolutionary Applications, 1(1), 95-111.
Alberto, F., Bouffier, L., Louvet, J. M., Lamy, J. B., Delzon, S., & Kremer, A. (2011). Adaptive responses for seed and leaf phenology in natural populations of sessile oak along an altitudinal gradient. Journal of Evolutionary Biology, 24(7), 1442-1454.
Anderson, J. T., Perera, N., Chowdhury, B., & Mitchell-Olds, T. (2015). Microgeographic patterns of genetic divergence and adaptation across environmental gradients in Boechera stricta (Brassicaceae). The American Naturalist, 186(S1), S60-S73.
Anderson, P. M., Lozhkin, A. V., & Brubaker, L. B. (2002). Implications of a 24,000-yr palynological record for a Younger Dryas cooling and for boreal forest development in northeastern Siberia. Quaternary Research, 57(3), 325-333.
Anten, N. P., Alcalá‐Herrera, R., Schieving, F., & Onoda, Y. (2010). Wind and mechanical stimuli differentially affect leaf traits in Plantago major. New Phytologist, 188(2), 554-564.
Ao, H., Roberts, A. P., Dekkers, M. J., Liu, X., Rohling, E. J., Shi, Z., . . . Zhao, X. (2016). Late Miocene–Pliocene Asian monsoon intensification linked to Antarctic ice-sheet growth. Earth and Planetary Science Letters, 444, 75-87.
Armstrong-Herniman, W., & Greenwood, S. (2021). The role of winter precipitation as a climatic driver of the spring phenology of five California Quercus species (Fagaceae). Madroño, 68(4), 450-460.
Bamba, M., Kawaguchi, Y. W., & Tsuchimatsu, T. (2019). Plant adaptation and speciation studied by population genomic approaches. Development, Growth & Differentiation, 61(1), 12-24.
Batchelor, C. L., Margold, M., Krapp, M., Murton, D. K., Dalton, A. S., Gibbard, P. L., . . . Manica, A. (2019). The configuration of Northern Hemisphere ice sheets through the Quaternary. Nature Communications, 10(1), 1-10.
Bennett, K. D., & Provan, J. (2008). What do we mean by ‘refugia’? Quaternary Science Reviews, 27(27-28), 2449-2455.
Bertin, R. I. (2008). Plant phenology and distribution in relation to recent climate change. The Journal of the Torrey Botanical Society, 135(1), 126-146.
Biddington, N. L. (1986). The effects of mechanically-induced stress in plants—a review. Plant growth regulation, 4(2), 103-123.
Bolte, A., Czajkowski, T., Cocozza, C., Tognetti, R., De Miguel, M., Pšidová, E., . . . Cochard, H. (2016). Desiccation and mortality dynamics in seedlings of different European beech (Fagus sylvatica L.) populations under extreme drought conditions. Frontiers in plant science, 7, 751.
Bontrager, M., & Angert, A. L. (2019). Gene flow improves fitness at a range edge under climate change. Evolution letters, 3(1), 55-68.
Bragg, J. G., Supple, M. A., Andrew, R. L., & Borevitz, J. O. (2015). Genomic variation across landscapes: insights and applications. New Phytologist, 207(4), 953-967.
Broennimann, O., Fitzpatrick, M. C., Pearman, P. B., Petitpierre, B., Pellissier, L., Yoccoz, N. G., . . . Zimmermann, N. E. (2012). Measuring ecological niche overlap from occurrence and spatial environmental data. Global Ecology and Biogeography, 21(4), 481-497.
Bruschi, P. (2010). Geographical variation in morphology of Quercus petraea (Matt.) Liebl. as related to drought stress. Plant Biosystems, 144(2), 298-307.
Bu, D., Luo, H., Huo, P., Wang, Z., Zhang, S., He, Z., . . . Guo, J. (2021). KOBAS-i: intelligent prioritization and exploratory visualization of biological functions for gene enrichment analysis. Nucleic acids research, 49(W1), W317-W325.
Byars, S. G., Papst, W., & Hoffmann, A. A. (2007). Local adaptation and cogradient selection in the alpine plant, Poa hiemata, along a narrow altitudinal gradient. Evolution: International Journal of Organic Evolution, 61(12), 2925-2941.
Camarero, J. J., Manzanedo, R. D., Sanchez-Salguero, R., & Navarro-Cerrillo, R. M. (2013). Growth response to climate and drought change along an aridity gradient in the southernmost Pinus nigra relict forests. Annals of Forest Science, 70(8), 769-780.
Cannon, C. H., Brendel, O., Deng, M., Hipp, A. L., Kremer, A., Kua, C.-S., . . . Sork, V. L. (2018). Gaining a global perspective on Fagaceae genomic diversification and adaptation. New Phytologist, 218(3), 894-897.
Cao, Y. N., Zhu, S. S., Chen, J., Comes, H. P., Wang, I. J., Chen, L. Y., . . . Qiu, Y. X. (2020). Genomic insights into historical population dynamics, local adaptation, and climate change vulnerability of the East Asian Tertiary relict Euptelea (Eupteleaceae). Evolutionary Applications, 13(8), 2038-2055.
Cavender-Bares, J., & Ramírez-Valiente, J. A. (2017). Physiological evidence from common garden experiments for local adaptation and adaptive plasticity to climate in American live oaks (Quercus Section Virentes): implications for conservation under global change. In Oaks physiological ecology. Exploring the functional diversity of genus Quercus L. (pp. 107-135): Springer.
Cavender‐Bares, J. (2019). Diversification, adaptation, and community assembly of the American oaks (Quercus), a model clade for integrating ecology and evolution. New Phytologist, 221(2), 669-692.
Cavender‐Bares, J., Gonzalez‐Rodriguez, A., Pahlich, A., Koehler, K., & Deacon, N. (2011). Phylogeography and climatic niche evolution in live oaks (Quercus series Virentes) from the tropics to the temperate zone. Journal of Biogeography, 38(5), 962-981.
Cazzolla Gatti, R., Callaghan, T., Velichevskaya, A., Dudko, A., Fabbio, L., Battipaglia, G., & Liang, J. (2019). Accelerating upward treeline shift in the Altai Mountains under last-century climate change. Scientific Reports, 9(1), 1-13.
Chen, D., Zhang, X., Kang, H., Sun, X., Yin, S., Du, H., . . . Liu, C. (2012). Phylogeography of Quercus variabilis based on chloroplast DNA sequence in East Asia: multiple glacial refugia and mainland-migrated island populations. PLoS One, 7(10), e47268.
Chen, J.-M., Li, T., & Shih, C.-F. (2010). Tropical cyclone–and monsoon-induced rainfall variability in Taiwan. Journal of Climate, 23(15), 4107-4120.
Cheng, Y. P., Hwang, S. Y., & Lin, T. P. (2005). Potential refugia in Taiwan revealed by the phylogeographical study of Castanopsis carlesii Hayata (Fagaceae). Molecular Ecology, 14(7), 2075-2085.
Chhatre, V. E., & Emerson, K. J. (2017). StrAuto: automation and parallelization of STRUCTURE analysis. BMC bioinformatics, 18(1), 1-5.
Chu, H. D., Nguyen, K. H., Watanabe, Y., Le, D. T., Pham, T. L. T., Mochida, K., & Tran, L.-S. P. (2018). Identification, structural characterization and gene expression analysis of members of the Nuclear Factor-Y family in chickpea (Cicer arietinum L.) under dehydration and abscisic acid treatments. International journal of molecular sciences, 19(11), 3290.
Clark, J. S., Bell, D. M., Hersh, M. H., & Nichols, L. (2011). Climate change vulnerability of forest biodiversity: climate and competition tracking of demographic rates. Global change biology, 17(5), 1834-1849.
Comes, H. P., & Kadereit, J. W. (1998). The effect of Quaternary climatic changes on plant distribution and evolution. Trends in plant science, 3(11), 432-438.
Craft, K. J., & Ashley, M. V. (2007). Landscape genetic structure of bur oak (Quercus macrocarpa) savannas in Illinois. Forest Ecology and Management, 239(1-3), 13-20.
Cruzan, M. B., & Hendrickson, E. C. (2020). Landscape genetics of plants: challenges and opportunities. Plant communications, 1(6), 100100.
Cuevas-Reyes, P., Canché-Delgado, A., Maldonado-López, Y., Fernandes, G. W., Oyama, K., & González-Rodríguez, A. (2018). Patterns of herbivory and leaf morphology in two Mexican hybrid oak complexes: importance of fluctuating asymmetry as indicator of environmental stress in hybrid plants. Ecological Indicators, 90, 164-170.
Curtis, P. G., Slay, C. M., Harris, N. L., Tyukavina, A., & Hansen, M. C. (2018). Classifying drivers of global forest loss. Science, 361(6407), 1108-1111.
Cushman, S. A., Wasserman, T. N., Landguth, E. L., & Shirk, A. J. (2013). Re-evaluating causal modeling with Mantel tests in landscape genetics. Diversity, 5(1), 51-72.
Danecek, P., Auton, A., Abecasis, G., Albers, C. A., Banks, E., DePristo, M. A., . . . Sherry, S. T. (2011). The variant call format and VCFtools. Bioinformatics, 27(15), 2156-2158.
Dirnböck, T., Essl, F., & Rabitsch, W. (2011). Disproportional risk for habitat loss of high‐altitude endemic species under climate change. Global change biology, 17(2), 990-996.
Doyle, J. (1991). DNA protocols for plants. In Molecular techniques in taxonomy (pp. 283-293): Springer.
Du, F. K., Wang, T., Wang, Y., Ueno, S., & de Lafontaine, G. (2020). Contrasted patterns of local adaptation to climate change across the range of an evergreen oak, Quercus aquifolioides. Evolutionary Applications, 13(9), 2377-2391.
Elith, J., & Leathwick, J. R. (2009). Species distribution models: ecological explanation and prediction across space and time. Annual Review of Ecology, Evolution and Systematics, 40(1), 677-697.
Ellis, N., Smith, S. J., & Pitcher, C. R. (2012). Gradient forests: calculating importance gradients on physical predictors. Ecology, 93(1), 156-168.
Ennos, R. (1994). Estimating the relative rates of pollen and seed migration among plant populations. Heredity, 72(3), 250-259.
Evanno, G., Regnaut, S., & Goudet, J. (2005). Detecting the number of clusters of individuals using the software STRUCTURE: a simulation study. Molecular Ecology, 14(8), 2611-2620.
Excoffier, L., & Lischer, H. E. (2010). Arlequin suite ver 3.5: a new series of programs to perform population genetics analyses under Linux and Windows. Molecular Ecology Resources, 10(3), 564-567.
Excoffier, L., Marchi, N., Marques, D. A., Matthey-Doret, R., Gouy, A., & Sousa, V. C. (2021). fastsimcoal2: demographic inference under complex evolutionary scenarios. Bioinformatics, 37(24), 4882-4885.
Fang, J.-Y., Chung, J.-D., Chiang, Y.-C., Chang, C.-T., Chen, C.-Y., & Hwang, S.-Y. (2013). Divergent selection and local adaptation in disjunct populations of an endangered conifer, Keteleeria davidiana var. formosana (Pinaceae). PLoS One, 8(7), e70162.
Fenderson, L. E., Kovach, A. I., & Llamas, B. (2020). Spatiotemporal landscape genetics: Investigating ecology and evolution through space and time. Molecular Ecology, 29(2), 218-246.
Fick, S. E., & Hijmans, R. J. (2017). WorldClim 2: new 1‐km spatial resolution climate surfaces for global land areas. International journal of climatology, 37(12), 4302-4315.
Fitak, R. R. (2021). OptM: estimating the optimal number of migration edges on population trees using Treemix. Biology Methods and Protocols, 6(1), bpab017.
Fitzpatrick, M. C., & Keller, S. R. (2015). Ecological genomics meets community‐level modelling of biodiversity: Mapping the genomic landscape of current and future environmental adaptation. Ecology letters, 18(1), 1-16.
Flannigan, M. D., Stocks, B. J., & Wotton, B. M. (2000). Climate change and forest fires. Science of the Total Environment, 262(3), 221-229.
Foll, M. (2012). BayeScan v2. 1 user manual. Ecology, 20(10).
Foster, P. (2001). The potential negative impacts of global climate change on tropical montane cloud forests. Earth-Science Reviews, 55(1-2), 73-106.
Frichot, E., & François, O. (2015). LEA: An R package for landscape and ecological association studies. Methods in Ecology and Evolution, 6(8), 925-929.
Frichot, E., Schoville, S. D., Bouchard, G., & François, O. (2013). Testing for associations between loci and environmental gradients using latent factor mixed models. Molecular Biology and Evolution, 30(7), 1687-1699.
Friedman, J., & Barrett, S. C. (2009). Wind of change: new insights on the ecology and evolution of pollination and mating in wind-pollinated plants. Annals of Botany, 103(9), 1515-1527.
Gao, J., Liu, Z. L., Zhao, W., Tomlinson, K. W., Xia, S. W., Zeng, Q. Y., . . . Chen, J. (2021). Combined genotype and phenotype analyses reveal patterns of genomic adaptation to local environments in the subtropical oak Quercus acutissima. Journal of Systematics and Evolution, 59(3), 541-556.
Gauthier, S., Bernier, P., Burton, P. J., Edwards, J., Isaac, K., Isabel, N., . . . Nelson, E. A. (2014). Climate change vulnerability and adaptation in the managed Canadian boreal forest. Environmental Reviews, 22(3), 256-285.
Gharehaghaji, M., Minor, E. S., Ashley, M. V., Abraham, S. T., & Koenig, W. D. (2017). Effects of landscape features on gene flow of valley oaks (Quercus lobata). Plant Ecology, 218(4), 487-499.
Giesecke, T., & Brewer, S. (2018). Notes on the postglacial spread of abundant European tree taxa. Vegetation History and Archaeobotany, 27(2), 337-349.
Gómez, J. M., Garcıa, D., & Zamora, R. (2003). Impact of vertebrate acorn-and seedling-predators on a Mediterranean Quercus pyrenaica forest. Forest Ecology and Management, 180(1-3), 125-134.
Gougherty, A. V., Keller, S. R., & Fitzpatrick, M. C. (2021). Maladaptation, migration and extirpation fuel climate change risk in a forest tree species. Nature Climate Change, 11(2), 166-171.
Grasty, M. R., Thompson, P. G., Hendrickson, E. C., Pheil, A. E., & Cruzan, M. B. (2020). Fine‐scale habitat heterogeneity and vole runways influence seed dispersal in Plagiobothrys nothofulvus. American journal of botany, 107(3), 413-422.
Gratani, L. (2014). Plant phenotypic plasticity in response to environmental factors. Advances in botany, 2014.
Grömping, U. (2007). Relative importance for linear regression in R: the package relaimpo. Journal of statistical software, 17, 1-27.
Guan, B. T., Hsu, H.-W., Wey, T.-H., & Tsao, L.-S. (2009). Modeling monthly mean temperatures for the mountain regions of Taiwan by generalized additive models. Agricultural and Forest Meteorology, 149(2), 281-290.
Guerin, G. R., Wen, H., & Lowe, A. J. (2012). Leaf morphology shift linked to climate change. Biology letters, 8(5), 882-886.
Guerrero, J., Andrello, M., Burgarella, C., & Manel, S. (2018). Soil environment is a key driver of adaptation in Medicago truncatula: new insights from landscape genomics. New Phytologist, 219(1), 378-390.
Gugger, P. F., Fitz‐Gibbon, S. T., Albarrán‐Lara, A., Wright, J. W., & Sork, V. L. (2021). Landscape genomics of Quercus lobata reveals genes involved in local climate adaptation at multiple spatial scales. Molecular Ecology, 30(2), 406-423.
Gupta, A., Dwivedi, S., Sinha, S., Tripathi, R., Rai, U., & Singh, S. (2007). Metal accumulation and growth performance of Phaseolus vulgaris grown in fly ash amended soil. Bioresource technology, 98(17), 3404-3407.
Hamilton, M. B., & Miller, J. R. (2002). Comparing relative rates of pollen and seed gene flow in the island model using nuclear and organelle measures of population structure. Genetics, 162(4), 1897-1909.
Helmens, K. F., Salonen, J. S., Plikk, A., Engels, S., Väliranta, M., Kylander, M., . . . Renssen, H. (2015). Major cooling intersecting peak Eemian Interglacial warmth in northern Europe. Quaternary Science Reviews, 122, 293-299.
Hewitt, G. (2000). The genetic legacy of the Quaternary ice ages. Nature, 405(6789), 907-913.
Hewitt, G. M. (2004). Genetic consequences of climatic oscillations in the Quaternary. Philosophical Transactions of the Royal Society of London. Series B: Biological Sciences, 359(1442), 183-195.
Hijmans, R. J., van Etten, J., Mattiuzzi, M., Sumner, M., Greenberg, J., Lamigueiro, O., . . . Shortridge, A. (2013). Raster package in R. In: Version.
Hohenlohe, P. A., Bassham, S., Etter, P. D., Stiffler, N., Johnson, E. A., & Cresko, W. A. (2010). Population genomics of parallel adaptation in threespine stickleback using sequenced RAD tags. PLoS genetics, 6(2), e1000862.
Homolka, A., Schueler, S., Burg, K., Fluch, S., & Kremer, A. (2013). Insights into drought adaptation of two European oak species revealed by nucleotide diversity of candidate genes. Tree Genetics & Genomes, 9(5), 1179-1192.
Hovenden, M. J., & Vander Schoor, J. K. (2004). Nature vs nurture in the leaf morphology of Southern beech, Nothofagus cunninghamii (Nothofagaceae). New Phytologist, 161(2), 585-594.
Hsieh, Y., Chung, J., Wang, C., Chang, C., Chen, C., & Hwang, S.-Y. (2013). Historical connectivity, contemporary isolation and local adaptation in a widespread but discontinuously distributed species endemic to Taiwan, Rhododendron oldhamii (Ericaceae). Heredity, 111(2), 147-156.
Hsu, F.-H., Lin, F.-J., & Lin, Y.-S. (2001). Phylogeographic structure of the Formosan wood mouse, Apodemus semotus Thomas. ZOOLOGICAL STUDIES-TAIPEI-, 40(2), 91-102.
Huang, C.-C., Hsu, T.-W., Wang, H.-V., Liu, Z.-H., Chen, Y.-Y., Chiu, C.-T., . . . Chiang, T.-Y. (2016). Multilocus analyses reveal postglacial demographic shrinkage of Juniperus morrisonicola (Cupressaceae), a dominant alpine species in Taiwan. PLoS One, 11(8), e0161713.
Huang, C.-L., Chang, C.-T., Huang, B.-H., Chung, J.-D., Chen, J.-H., Chiang, Y.-C., & Hwang, S.-Y. (2015). Genetic relationships and ecological divergence in Salix species and populations in Taiwan. Tree Genetics & Genomes, 11(3), 1-17.
Huang, S. F., Hwang, S. Y., Wang, J. C., & Lin, T. P. (2004). Phylogeography of Trochodendron aralioides (Trochodendraceae) in Taiwan and its adjacent areas. Journal of Biogeography, 31(8), 1251-1259.
Huang, T. (1994). Flora of Taiwan, 2nd edn, Vols 1–5. Editorial Committee of the Flora of Taiwan, Taipei.
Jiang, X. L., Su, Z. H., Xu, G. B., & Deng, M. (2021). Genomic signals reveal past evolutionary dynamics of Quercus schottkyana and its response to future climate change. Journal of Systematics and Evolution, 59(5), 985-997.
Joel, G., Aplet, G., & Vitousek, P. M. (1994). Leaf morphology along environmental gradients in Hawaiian Metrosideros polymorpha. Biotropica, 17-22.
Jombart, T. (2008). adegenet: a R package for the multivariate analysis of genetic markers. Bioinformatics, 24(11), 1403-1405.
Keyghobadi, N., Roland, J., & Strobeck, C. (2005). Genetic differentiation and gene flow among populations of the alpine butterfly, Parnassius smintheus, vary with landscape connectivity. Molecular Ecology, 14(7), 1897-1909.
Kim, B. Y., Wei, X., Fitz‐Gibbon, S., Lohmueller, K. E., Ortego, J., Gugger, P. F., & Sork, V. L. (2018). RADseq data reveal ancient, but not pervasive, introgression between Californian tree and scrub oak species (Quercus sect. Quercus: Fagaceae). Molecular Ecology, 27(22), 4556-4571.
Kirschbaum, M. U., & Fischlin, A. (1996). Climate change impacts on forests.
Kling, M. M., & Ackerly, D. D. (2021). Global wind patterns shape genetic differentiation, asymmetric gene flow, and genetic diversity in trees. Proceedings of the National Academy of Sciences, 118(17), e2017317118.
Klupczyńska, E. A., & Ratajczak, E. (2021). Can Forest Trees Cope with Climate Change?—Effects of DNA Methylation on Gene Expression and Adaptation to Environmental Change. International journal of molecular sciences, 22(24), 13524.
Kolde, R., & Kolde, M. R. (2018). Package ‘pheatmap’. R Package, 1.
Kopelman, N. M., Mayzel, J., Jakobsson, M., Rosenberg, N. A., & Mayrose, I. (2015). Clumpak: a program for identifying clustering modes and packaging population structure inferences across K. Molecular Ecology Resources, 15(5), 1179-1191.
Körner, C. (2007). The use of ‘altitude’in ecological research. Trends in Ecology & Evolution, 22(11), 569-574.
Kramer, K., Leinonen, I., & Loustau, D. (2000). The importance of phenology for the evaluation of impact of climate change on growth of boreal, temperate and Mediterranean forests ecosystems: an overview. International Journal of Biometeorology, 44(2), 67-75.
Kremer, A., Dupouey, J. L., Deans, J. D., Cottrell, J., Csaikl, U., Finkeldey, R., . . . Van Dam, B. (2002). Leaf morphological differentiation between Quercus robur and Quercus petraea is stable across western European mixed oak stands. Annals of Forest Science, 59(7), 777-787.
Kukla, G. J., Bender, M. L., de Beaulieu, J.-L., Bond, G., Broecker, W. S., Cleveringa, P., . . . Jouzel, J. (2002). Last interglacial climates. Quaternary Research, 58(1), 2-13.
Lashof, D. A., & Ahuja, D. R. (1990). Relative contributions of greenhouse gas emissions to global warming. Nature, 344(6266), 529-531.
Lauteri, M., Pliura, A., Monteverdi, M., Brugnoli, E., Villani, F., & Eriksson, G. (2004). Genetic variation in carbon isotope discrimination in six European populations of Castanea sativa Mill. originating from contrasting localities. Journal of Evolutionary Biology, 17(6), 1286-1296.
Lee, B.-h., Henderson, D. A., & Zhu, J.-K. (2005). The Arabidopsis cold-responsive transcriptome and its regulation by ICE1. The Plant Cell, 17(11), 3155-3175.
Lee, Y.-J., Hwang, S.-Y., Ho, K.-C., & Lin, T.-P. (2006). Source populations of Quercus glauca in the last glacial age in Taiwan revealed by nuclear microsatellite markers. Journal of Heredity, 97(3), 261-269.
Li, C., Zhang, X., Liu, X., Luukkanen, O., & Berninger, F. (2006). Leaf morphological and physiological responses of Quercus aquifolioides along an altitudinal gradient. Silva Fennica, 40(1), 5.
Li, C. F., Chytrý, M., Zelený, D., Chen, M. Y., Chen, T. Y., Chiou, C. R., . . . Yeh, C. L. (2013). Classification of T aiwan forest vegetation. Applied Vegetation Science, 16(4), 698-719.
Li, H., Handsaker, B., Wysoker, A., Fennell, T., Ruan, J., Homer, N., . . . Durbin, R. (2009). The sequence alignment/map format and SAMtools. Bioinformatics, 25(16), 2078-2079.
Li, H.-L. (1975). Flora of Taiwan, Vol. 2. Flora of Taiwan, Vol. 2.
Li, S.-B., Xie, Z.-Z., Hu, C.-G., & Zhang, J.-Z. (2016). A review of auxin response factors (ARFs) in plants. Frontiers in plant science, 7, 47.
Li, Y., Zhang, Y., Liao, P.-C., Wang, T., Wang, X., Ueno, S., & Du, F. K. (2021). Genetic, geographic, and climatic factors jointly shape leaf morphology of an alpine oak, Quercus aquifolioides Rehder & EH Wilson. Annals of Forest Science, 78(3), 1-18.
Li, Y., Zou, D., Shrestha, N., Xu, X., Wang, Q., Jia, W., & Wang, Z. (2020). Spatiotemporal variation in leaf size and shape in response to climate. Journal of Plant Ecology, 13(1), 87-96.
Li, Y.-S., Shih, K.-M., Chang, C.-T., Chung, J.-D., & Hwang, S.-Y. (2019). Testing the effect of mountain ranges as a physical barrier to current gene flow and environmentally dependent adaptive divergence in Cunninghamia konishii (Cupressaceae). Frontiers in genetics, 10, 742.
Liao, P.-C., Kuo, D.-C., Lin, C.-C., Ho, K.-C., Lin, T.-P., & Hwang, S.-Y. (2010). Historical spatial range expansion and a very recent bottleneck of Cinnamomum kanehiraeHay.(Lauraceae) in Taiwan inferred from nuclear genes. BMC evolutionary biology, 10(1), 1-17.
Liepelt, S., Bialozyt, R., & Ziegenhagen, B. (2002). Wind-dispersed pollen mediates postglacial gene flow among refugia. Proceedings of the National Academy of Sciences, 99(22), 14590-14594.
Lin, H.-D., Chen, Y.-R., & Lin, S.-M. (2012). Strict consistency between genetic and topographic landscapes of the brown tree frog (Buergeria robusta) in Taiwan. Molecular Phylogenetics and Evolution, 62(1), 251-262.
Lindner, M., Maroschek, M., Netherer, S., Kremer, A., Barbati, A., Garcia-Gonzalo, J., . . . Kolström, M. (2010). Climate change impacts, adaptive capacity, and vulnerability of European forest ecosystems. Forest Ecology and Management, 259(4), 698-709.
Lines, E. R., Zavala, M. A., Purves, D. W., & Coomes, D. A. (2012). Predictable changes in aboveground allometry of trees along gradients of temperature, aridity and competition. Global Ecology and Biogeography, 21(10), 1017-1028.
Lipton, D., Rubenstein, M. A., Weiskopf, S. R., Carter, S. L., Peterson, J., Crozier, L., . . . Morelli, T. L. (2018). Ecosystems, ecosystem services, and biodiversity. Retrieved from
Liu, C., Li, Y., Xu, L., Chen, Z., & He, N. (2019). Variation in leaf morphological, stomatal, and anatomical traits and their relationships in temperate and subtropical forests. Scientific Reports, 9(1), 1-8.
Liu, J., Möller, M., Provan, J., Gao, L. M., Poudel, R. C., & Li, D. Z. (2013). Geological and ecological factors drive cryptic speciation of yews in a biodiversity hotspot. New Phytologist, 199(4), 1093-1108.
Liu, W., Zheng, L., & Qi, D. (2020). Variation in leaf traits at different altitudes reflects the adaptive strategy of plants to environmental changes. Ecology and evolution, 10(15), 8166-8175.
Liu, X., & Fu, Y.-X. (2020). Stairway Plot 2: demographic history inference with folded SNP frequency spectra. Genome biology, 21(1), 1-9.
Loftis, D. L., & McGee, C. E. (1993). Oak regeneration: serious problems, practical recommendations: symposium proceedings, Knoxville, Tennessee, September 8-10, 1992 (Vol. 84): Southeastern Forest Experimental Station.
Lu, S.-Y., Hong, K.-H., Liu, S.-L., Cheng, Y.-P., Wu, W.-L., & Chiang, T.-Y. (2002). Genetic variation and population differentiation of Michelia formosana (Magnoliaceae) based on cpDNA variation and RAPD fingerprints: relevance to post-Pleistocene recolonization. Journal of plant research, 115(3), 0203-0216.
Luu, K., Bazin, E., & Blum, M. G. (2017). pcadapt: an R package to perform genome scans for selection based on principal component analysis. Molecular Ecology Resources, 17(1), 67-77.
Macel, M., Lawson, C. S., Mortimer, S. R., Šmilauerova, M., Bischoff, A., Crémieux, L., . . . Bezemer, T. M. (2007). Climate vs. soil factors in local adaptation of two common plant species. Ecology, 88(2), 424-433.
Malcolm, J. R., Liu, C., Neilson, R. P., Hansen, L., & Hannah, L. (2006). Global warming and extinctions of endemic species from biodiversity hotspots. Conservation Biology, 20(2), 538-548.
Marchelli, P., Smouse, P. E., & Gallo, L. A. (2012). Short-distance pollen dispersal for an outcrossed, wind-pollinated southern beech (Nothofagus nervosa (Phil.) Dim. et Mil.). Tree Genetics & Genomes, 8(5), 1123-1134.
Mattioni, C., Martin, M. A., Chiocchini, F., Cherubini, M., Gaudet, M., Pollegioni, P., . . . Paule, L. (2017). Landscape genetics structure of European sweet chestnut (Castanea sativa Mill): indications for conservation priorities. Tree Genetics & Genomes, 13(2), 39.
Matyas, C. (1996). Climatic adaptation of trees: rediscovering provenance tests. Euphytica, 92(1), 45-54.
Maya-García, R., Torres-Miranda, A., Cuevas-Reyes, P., & Oyama, K. (2020). Morphological differentiation among populations of Quercus elliptica Née (Fagaceae) along an environmental gradient in Mexico and Central America. Botanical Sciences, 98(1), 50-66.
McRae, B. H., & Shah, V. B. (2009). Circuitscape user’s guide. The University of California, Santa Barbara.
Meier, I. C., & Leuschner, C. (2008). Leaf size and leaf area index in Fagus sylvatica forests: competing effects of precipitation, temperature, and nitrogen availability. Ecosystems, 11(5), 655-669.
Meireles, J. E., Beulke, A., Borkowski, D. S., Romero-Severson, J., & Cavender-Bares, J. (2017). Balancing selection maintains diversity in a cold tolerance gene in broadly distributed live oaks. Genome, 60(9), 762-769.
Meng, H. H., Su, T., Gao, X. Y., Li, J., Jiang, X. L., Sun, H., & Zhou, Z. K. (2017). Warm–cold colonization: response of oaks to uplift of the Himalaya–Hengduan Mountains. Molecular Ecology, 26(12), 3276-3294.
Midolo, G., De Frenne, P., Hölzel, N., & Wellstein, C. (2019). Global patterns of intraspecific leaf trait responses to elevation. Global change biology, 25(7), 2485-2498.
Miller, M. R., Dunham, J. P., Amores, A., Cresko, W. A., & Johnson, E. A. (2007). Rapid and cost-effective polymorphism identification and genotyping using restriction site associated DNA (RAD) markers. Genome research, 17(2), 240-248.
Modesto, I. S., Miguel, C., Pina-Martins, F., Glushkova, M., Veloso, M., Paulo, O. S., & Batista, D. (2014). Identifying signatures of natural selection in cork oak (Quercus suber L.) genes through SNP analysis. Tree Genetics & Genomes, 10(6), 1645-1660.
Moracho, E., Moreno, G., Jordano, P., & Hampe, A. (2016). Unusually limited pollen dispersal and connectivity of P edunculate oak (Quercus robur) refugial populations at the species' southern range margin. Molecular Ecology, 25(14), 3319-3331.
Müller, M., & Gailing, O. (2019). Abiotic genetic adaptation in the Fagaceae. Plant Biology, 21(5), 783-795.
Mussmann, S. M., Douglas, M. R., Chafin, T. K., & Douglas, M. E. (2019). BA3‐SNPs: Contemporary migration reconfigured in BayesAss for next‐generation sequence data. Methods in Ecology and Evolution, 10(10), 1808-1813.
Nadachowska‐Brzyska, K., Burri, R., Smeds, L., & Ellegren, H. (2016). PSMC analysis of effective population sizes in molecular ecology and its application to black‐and‐white Ficedula flycatchers. Molecular Ecology, 25(5), 1058-1072.
Narasimhan, V., Danecek, P., Scally, A., Xue, Y., Tyler-Smith, C., & Durbin, R. (2016). BCFtools/RoH: a hidden Markov model approach for detecting autozygosity from next-generation sequencing data. Bioinformatics, 32(11), 1749-1751.
Oksanen, J., Blanchet, F. G., Kindt, R., Legendre, P., Minchin, P. R., O’hara, R., . . . Wagner, H. (2013). Package ‘vegan’. Community ecology package, version, 2(9), 1-295.
Onoda, Y., & Anten, N. P. (2011). Challenges to understand plant responses to wind. Plant Signaling & Behavior, 6(7), 1057-1059.
Ortego, J., Gugger, P. F., & Sork, V. L. (2017). Impacts of human‐induced environmental disturbances on hybridization between two ecologically differentiated Californian oak species. New Phytologist, 213(2), 942-955.
Ozanne, C. M., Anhuf, D., Boulter, S. L., Keller, M., Kitching, R. L., Körner, C., . . . Dias, P. S. (2003). Biodiversity meets the atmosphere: a global view of forest canopies. Science, 301(5630), 183-186.
Palacio‐López, K., Beckage, B., Scheiner, S., & Molofsky, J. (2015). The ubiquity of phenotypic plasticity in plants: a synthesis. Ecology and evolution, 5(16), 3389-3400.
Pedlar, J. H., & McKenney, D. W. (2017). Assessing the anticipated growth response of northern conifer populations to a warming climate. Scientific Reports, 7(1), 1-10.
Peppe, D. J., Baumgartner, A., Flynn, A., & Blonder, B. (2018). Reconstructing paleoclimate and paleoecology using fossil leaves. In Methods in paleoecology (pp. 289-317): Springer, Cham.
Peppe, D. J., Royer, D. L., Cariglino, B., Oliver, S. Y., Newman, S., Leight, E., . . . Adams, J. M. (2011). Sensitivity of leaf size and shape to climate: global patterns and paleoclimatic applications. New Phytologist, 190(3), 724-739.
Peterman, W. E. (2018). ResistanceGA: An R package for the optimization of resistance surfaces using genetic algorithms. Methods in Ecology and Evolution, 9(6), 1638-1647.
Peterman, W. E., Winiarski, K. J., Moore, C. E., da Silva Carvalho, C., Gilbert, A. L., & Spear, S. F. (2019). A comparison of popular approaches to optimize landscape resistance surfaces. Landscape Ecology, 34(9), 2197-2208.
Peters, R. L. (1990). Effects of global warming on forests. Forest Ecology and Management, 35(1-2), 13-33.
Petit, R. J., Aguinagalde, I., de Beaulieu, J.-L., Bittkau, C., Brewer, S., Cheddadi, R., . . . Lascoux, M. (2003). Glacial refugia: hotspots but not melting pots of genetic diversity. Science, 300(5625), 1563-1565.
Petit, R. J., Carlson, J., Curtu, A. L., Loustau, M.-L., Plomion, C., González-Rodríguez, A., . . . Ducousso, A. (2013). Fagaceae trees as models to integrate ecology, evolution and genomics. New Phytologist, 197(2), 369-371.
Petkova, D., Novembre, J., & Stephens, M. (2016). Visualizing spatial population structure with estimated effective migration surfaces. Nature genetics, 48(1), 94-100.
Phillips, S. J., & Dudík, M. (2008). Modeling of species distributions with Maxent: new extensions and a comprehensive evaluation. Ecography, 31(2), 161-175.
Piao, S., Liu, Q., Chen, A., Janssens, I. A., Fu, Y., Dai, J., . . . Zhu, X. (2019). Plant phenology and global climate change: Current progresses and challenges. Global change biology, 25(6), 1922-1940.
Pickrell, J., & Pritchard, J. (2012). Inference of population splits and mixtures from genome-wide allele frequency data. Nature Precedings, 1-1.
Pina‐Martins, F., Baptista, J., Pappas Jr, G., & Paulo, O. S. (2019). New insights into adaptation and population structure of cork oak using genotyping by sequencing. Global change biology, 25(1), 337-350.
Pitcher, C., Ellis, N., Smith, S., Pitcher, R., Ellis, N., Smith, S., & Pitcher, C. (2011). Example analysis of biodiversity survey data with R package gradientForest. R vignette. Available at http://gradientforest. r-forge. r-project. org/biodiversity-survey. pdf [Verified 27 March 2017].
Pluess, A. R., Frank, A., Heiri, C., Lalagüe, H., Vendramin, G. G., & Oddou‐Muratorio, S. (2016). Genome–environment association study suggests local adaptation to climate at the regional scale in Fagus sylvatica. New Phytologist, 210(2), 589-601.
Poggio, L., De Sousa, L. M., Batjes, N. H., Heuvelink, G., Kempen, B., Ribeiro, E., & Rossiter, D. (2021). SoilGrids 2.0: producing soil information for the globe with quantified spatial uncertainty. Soil, 7(1), 217-240.
Pollegioni, P., Woeste, K. E., Chiocchini, F., Olimpieri, I., Tortolano, V., Clark, J., . . . Malvolti, M. E. (2014). Landscape genetics of Persian walnut (Juglans regia L.) across its Asian range. Tree Genetics & Genomes, 10(4), 1027-1043.
Ramírez-Valiente, J. A., & Cavender-Bares, J. (2017). Evolutionary trade-offs between drought resistance mechanisms across a precipitation gradient in a seasonally dry tropical oak (Quercus oleoides). Tree physiology, 37(7), 889-901.
Ramírez‐Valiente, J. A., Deacon, N. J., Etterson, J., Center, A., Sparks, J. P., Sparks, K. L., . . . Cavender‐Bares, J. (2018). Natural selection and neutral evolutionary processes contribute to genetic divergence in leaf traits across a precipitation gradient in the tropical oak Quercus oleoides. Molecular Ecology, 27(9), 2176-2192.
Rellstab, C., Dauphin, B., & Exposito‐Alonso, M. (2021). Prospects and limitations of genomic offset in conservation management. Evolutionary Applications, 14(5), 1202-1212.
Rellstab, C., Gugerli, F., Eckert, A. J., Hancock, A. M., & Holderegger, R. (2015). A practical guide to environmental association analysis in landscape genomics. Molecular Ecology, 24(17), 4348-4370.
Rellstab, C., Zoller, S., Walthert, L., Lesur, I., Pluess, A. R., Graf, R., . . . Gugerli, F. (2016). Signatures of local adaptation in candidate genes of oaks (Quercus spp.) with respect to present and future climatic conditions. Molecular Ecology, 25(23), 5907-5924.
Ripley, B., Venables, B., Bates, D. M., Hornik, K., Gebhardt, A., Firth, D., & Ripley, M. B. (2013). Package ‘mass’. Cran r, 538, 113-120.
Robson, T. M., Sánchez-Gómez, D., Cano, F. J., & Aranda, I. (2012). Variation in functional leaf traits among beech provenances during a Spanish summer reflects the differences in their origin. Tree Genetics & Genomes, 8(5), 1111-1121.
Rohland, N., & Reich, D. (2012). Cost-effective, high-throughput DNA sequencing libraries for multiplexed target capture. Genome research, 22(5), 939-946.
Roth, J. K., & Vander Wall, S. B. (2005). Primary and secondary seed dispersal of bush chinquapin (Fagaceae) by scatterhoarding rodents. Ecology, 86(9), 2428-2439.
Royer, D. L., McElwain, J. C., Adams, J. M., & Wilf, P. (2008). Sensitivity of leaf size and shape to climate within Acer rubrum and Quercus kelloggii. New Phytologist, 179(3), 808-817.
Royer, D. L., Meyerson, L. A., Robertson, K. M., & Adams, J. M. (2009). Phenotypic plasticity of leaf shape along a temperature gradient in Acer rubrum. PLoS One, 4(10), e7653.
Rudi, H., Sandve, S. R., Opseth, L. M., Larsen, A., & Rognli, O. A. (2011). Identification of candidate genes important for frost tolerance in Festuca pratensis Huds. by transcriptional profiling. Plant science, 180(1), 78-85.
Sakaguchi, S., QIU, Y. X., LIU, Y. H., QI, X. S., KIM, S. H., Han, J., . . . Sakurai, S. (2012). Climate oscillation during the Quaternary associated with landscape heterogeneity promoted allopatric lineage divergence of a temperate tree Kalopanax septemlobus (Araliaceae) in East Asia. Molecular Ecology, 21(15), 3823-3838.
Savolainen, O., Lascoux, M., & Merilä, J. (2013). Ecological genomics of local adaptation. Nature Reviews Genetics, 14(11), 807-820.
Saxe, H., Cannell, M. G., Johnsen, Ø., Ryan, M. G., & Vourlitis, G. (2001). Tree and forest functioning in response to global warming. New Phytologist, 149(3), 369-399.
Schiffers, K., Bourne, E. C., Lavergne, S., Thuiller, W., & Travis, J. M. (2013). Limited evolutionary rescue of locally adapted populations facing climate change. Philosophical Transactions of the Royal Society B: Biological Sciences, 368(1610), 20120083.
Schmid, B. (1992). Phenotypic variation in plants. Evolutionary trends in plants, 6(1), 45-60.
Schmid-Siegert, E., Sarkar, N., Iseli, C., Calderon, S., Gouhier-Darimont, C., Chrast, J., . . . Pagni, M. (2017). Low number of fixed somatic mutations in a long-lived oak tree. Nature Plants, 3(12), 926-929.
Schoener, T. W. (1968). The Anolis lizards of Bimini: resource partitioning in a complex fauna. Ecology, 49(4), 704-726.
Schueler, S., & Schlünzen, K. H. (2006). Modeling of oak pollen dispersal on the landscape level with a mesoscale atmospheric model. Environmental Modeling & Assessment, 11(3), 179-194.
Seidl, R., Thom, D., Kautz, M., Martin-Benito, D., Peltoniemi, M., Vacchiano, G., . . . Honkaniemi, J. (2017). Forest disturbances under climate change. Nature Climate Change, 7(6), 395-402.
Shakun, J. D., & Carlson, A. E. (2010). A global perspective on Last Glacial Maximum to Holocene climate change. Quaternary Science Reviews, 29(15-16), 1801-1816.
Shih, F., Cheng, Y., Hwang, S.-Y., & Lin, T. (2006). Partial concordance between nuclear and organelle DNA in revealing the genetic divergence among Quercus glauca (Fagaceae) populations in Taiwan. International Journal of Plant Sciences, 167(4), 863-872.
Sillero, N. (2011). What does ecological modelling model? A proposed classification of ecological niche models based on their underlying methods. Ecological Modelling, 222(8), 1343-1346.
Smith, D. S., Schweitzer, J. A., Turk, P., Bailey, J. K., Hart, S. C., Shuster, S. M., & Whitham, T. G. (2012). Soil-mediated local adaptation alters seedling survival and performance. Plant and Soil, 352(1), 243-251.
Smith, V., & Ennos, A. (2003). The effects of air flow and stem flexure on the mechanical and hydraulic properties of the stems of sunflowers Helianthus annuus L. Journal of experimental botany, 54(383), 845-849.
Sork, V., Aitken, S., Dyer, R., Eckert, A., Legendre, P., & Neale, D. (2013). Putting the landscape into the genomics of trees: approaches for understanding local adaptation and population responses to changing climate. Tree Genetics & Genomes, 9(4), 901-911.
Sork, V. L. (2018). Genomic studies of local adaptation in natural plant populations. Journal of Heredity, 109(1), 3-15.
Sork, V. L., Squire, K., Gugger, P. F., Steele, S. E., Levy, E. D., & Eckert, A. J. (2016). Landscape genomic analysis of candidate genes for climate adaptation in a California endemic oak, Quercus lobata. American journal of botany, 103(1), 33-46.
Städler, T., Haubold, B., Merino, C., Stephan, W., & Pfaffelhuber, P. (2009). The impact of sampling schemes on the site frequency spectrum in nonequilibrium subdivided populations. Genetics, 182(1), 205-216.
Starkel, L. (1991). Environmental changes at the Younger Dryas-Preboreal transition and during the early Holocene: some distinctive aspects in central Europe. The Holocene, 1(3), 234-242.
Still, C. J., Foster, P. N., & Schneider, S. H. (1999). Simulating the effects of climate change on tropical montane cloud forests. Nature, 398(6728), 608-610.
Sun, M., Su, T., Zhang, S.-B., Li, S.-F., Anberree-Lebreton, J., & Zhou, Z.-K. (2016). Variations in leaf morphological traits of Quercus guyavifolia (Fagaceae) were mainly influenced by water and ultraviolet irradiation at high elevations on the Qinghai-Tibet Plateau, China. Int. J. Agric. Biol, 18, 266-273.
Teng, L. S. (1990). Geotectonic evolution of late Cenozoic arc-continent collision in Taiwan. Tectonophysics, 183(1-4), 57-76.
Thiel, D., Kreyling, J., Backhaus, S., Beierkuhnlein, C., Buhk, C., Egen, K., . . . Jentsch, A. (2014). Different reactions of central and marginal provenances of Fagus sylvatica to experimental drought. European Journal of Forest Research, 133(2), 247-260.
Thissen, D., Steinberg, L., & Kuang, D. (2002). Quick and easy implementation of the Benjamini-Hochberg procedure for controlling the false positive rate in multiple comparisons. Journal of educational and behavioral statistics, 27(1), 77-83.
Thomashow, M. F. (1999). Plant cold acclimation: freezing tolerance genes and regulatory mechanisms. Annual review of plant biology, 50(1), 571-599.
Trabucco, A., & Zomer, R. J. (2018). Global aridity index and potential evapotranspiration (ET0) climate database v2. CGIAR Consort Spat Inf, 10.
Tsukada, M. (1966). Late Pleistocene vegetation and climate in Taiwan (Formosa). Proceedings of the National Academy of Sciences of the United States of America, 55(3), 543.
Uemura, M., Joseph, R. A., & Steponkus, P. L. (1995). Cold acclimation of Arabidopsis thaliana (effect on plasma membrane lipid composition and freeze-induced lesions). Plant physiology, 109(1), 15-30.
Upton, G. J. (1992). Fisher's exact test. Journal of the Royal Statistical Society: Series A (Statistics in Society), 155(3), 395-402.
Urban, M. C., Bocedi, G., Hendry, A. P., Mihoub, J.-B., Pe’er, G., Singer, A., . . . Godsoe, W. (2016). Improving the forecast for biodiversity under climate change. Science, 353(6304), aad8466.
Vaca-Sánchez, M. S., González-Rodríguez, A., Maldonado-López, Y., Oyama, K., de Faria, M. L., Fagundes, M., & Cuevas-Reyes, P. (2021). Genetic and functional leaf traits variability of Quercus laurina along an oak diversity gradient in Mexico. European Journal of Forest Research, 140(5), 1211-1225.
Valencia, E., Quero, J. L., & Maestre, F. T. (2016). Functional leaf and size traits determine the photosynthetic response of 10 dryland species to warming. Journal of Plant Ecology, 9(6), 773-783.
van Strien, M. J., Keller, D., Holderegger, R., Ghazoul, J., Kienast, F., & Bolliger, J. (2014). Landscape genetics as a tool for conservation planning: predicting the effects of landscape change on gene flow. Ecological Applications, 24(2), 327-339.
Vander Wall, S. B. (2002). Masting in animal‐dispersed pines facilitates seed dispersal. Ecology, 83(12), 3508-3516.
Vanhove, M., Pina‐Martins, F., Coelho, A. C., Branquinho, C., Costa, A., Batista, D., . . . Marques, I. (2021). Using gradient Forest to predict climate response and adaptation in Cork oak. Journal of Evolutionary Biology, 34(6), 910-923.
Vitasse, Y., Lenz, A., Kollas, C., Randin, C. F., Hoch, G., & Körner, C. (2014). Genetic vs. non‐genetic responses of leaf morphology and growth to elevation in temperate tree species. Functional Ecology, 28(1), 243-252.
Waldvogel, A.-M., Schreiber, D., Pfenninger, M., & Feldmeyer, B. (2020). Climate change genomics calls for standardized data reporting. Frontiers in Ecology and Evolution, 8, 242.
Wang, J., Jin, Z., Zhou, M., Yu, Y., & Liang, M. (2020). Characterization of NF-Y transcription factor families in industrial rapeseed (Brassica napus L.) and identification of BnNF-YA3, which functions in the abiotic stress response. Industrial Crops and Products, 148, 112253.
Wang, J., Zhang, B., Hou, X., Chen, X., Han, N., & Chang, G. (2017). Effects of mast seeding and rodent abundance on seed predation and dispersal of Quercus aliena (Fagaceae) in Qinling Mountains, Central China. Plant Ecology, 218(7), 855-865.
Wang, T., O'Neill, G. A., & Aitken, S. N. (2010). Integrating environmental and genetic effects to predict responses of tree populations to climate. Ecological Applications, 20(1), 153-163.
Waring, R. H. (1987). Characteristics of trees predisposed to die. Bioscience, 37(8), 569-574.
Waring, R. H., & Schlesinger, W. (1985). Forest ecosystems. Analysis at multiples scales, 55.
Warren, D. L., Glor, R. E., & Turelli, M. (2008). Environmental niche equivalency versus conservatism: quantitative approaches to niche evolution. Evolution: International Journal of Organic Evolution, 62(11), 2868-2883.
Warren, D. L., Glor, R. E., & Turelli, M. (2010). ENMTools: a toolbox for comparative studies of environmental niche models. Ecography, 33(3), 607-611.
Way, D. A., & Oren, R. (2010). Differential responses to changes in growth temperature between trees from different functional groups and biomes: a review and synthesis of data. Tree physiology, 30(6), 669-688.
Wei, X., Meng, H., & Jiang, M. (2013). Landscape genetic structure of a streamside tree species Euptelea pleiospermum (Eupteleaceae): contrasting roles of river valley and mountain ridge. PLoS One, 8(6), e66928.
Wellstein, C., Chelli, S., Campetella, G., Bartha, S., Galiè, M., Spada, F., & Canullo, R. (2013). Intraspecific phenotypic variability of plant functional traits in contrasting mountain grasslands habitats. Biodiversity and Conservation, 22(10), 2353-2374.
Whiteley, A. R., Fitzpatrick, S. W., Funk, W. C., & Tallmon, D. A. (2015). Genetic rescue to the rescue. Trends in Ecology & Evolution, 30(1), 42-49.
Wilson, G. A., & Rannala, B. (2003). Bayesian inference of recent migration rates using multilocus genotypes. Genetics, 163(3), 1177-1191.
Winfield, M. O., Lu, C., Wilson, I. D., Coghill, J. A., & Edwards, K. J. (2010). Plant responses to cold: transcriptome analysis of wheat. Plant biotechnology journal, 8(7), 749-771.
Wu, F. T., Rau, R.-J., & Salzberg, D. (1997). Taiwan orogeny: thin-skinned or lithospheric collision? Tectonophysics, 274(1-3), 191-220.
Wu, S., Wang, Y., Wang, Z., Shrestha, N., & Liu, J. (2022). Species divergence with gene flow and hybrid speciation on the Qinghai–Tibet Plateau. New Phytologist, 234(2), 392-404.
Xiao, Z., Zhang, Z., & Krebs, C. J. (2013). Long‐term seed survival and dispersal dynamics in a rodent‐dispersed tree: testing the predator satiation hypothesis and the predator dispersal hypothesis. Journal of Ecology, 101(5), 1256-1264.
Xu, J., Deng, M., Jiang, X.-L., Westwood, M., Song, Y.-G., & Turkington, R. (2015). Phylogeography of Quercus glauca (Fagaceae), a dominant tree of East Asian subtropical evergreen forests, based on three chloroplast DNA interspace sequences. Tree Genetics & Genomes, 11(1), 805.
Yang, T., Wang, Y., Teotia, S., Wang, Z., Shi, C., Sun, H., . . . Tang, G. (2019). The interaction between miR160 and miR165/166 in the control of leaf development and drought tolerance in Arabidopsis. Scientific Reports, 9(1), 1-13.
Yu, F., Shi, X., Wang, D., Wang, T., Yi, X., & Lou, Y. (2014). Seed predation patterns favor the regeneration of dominant species in forest gaps compared with the understory in an oak-pine mixed forest. Acta theriologica, 59(4), 495-502.
Yu, G., Zhang, M., Rao, D., & Yang, J. (2013). Effect of pleistocene climatic oscillations on the phylogeography and demography of red knobby newt (Tylototriton shanjing) from Southwestern China. PLoS One, 8(2), e56066.
Yu, H.-T. (1995). Patterns of diversification and genetic population structure of small mammals in Taiwan. Biological Journal of the Linnean Society, 55(1), 69-89.
Yu, T.-L., Lin, H.-D., & Weng, C.-F. (2014). A new phylogeographic pattern of endemic Bufo bankorensis in Taiwan Island is attributed to the genetic variation of populations. PLoS One, 9(5), e98029.
Yuan, E. (2014). The Republic of China Yearbook 2014. Executive Yuan.
Yuan, S. L., Lin, L. K., & Oshida, T. (2006). Phylogeography of the mole‐shrew (Anourosorex yamashinai) in Taiwan: implications of interglacial refugia in a high‐elevation small mammal. Molecular Ecology, 15(8), 2119-2130.
Zeppel, M., Wilks, J. V., & Lewis, J. D. (2014). Impacts of extreme precipitation and seasonal changes in precipitation on plants. Biogeosciences, 11(11), 3083-3093.
Zhang, P., Wang, H., Wu, Q., Yu, M., & Wu, T. (2018). Effect of wind on the relation of leaf N, P stoichiometry with leaf morphology in Quercus species. Forests, 9(3), 110.
Zhang, S., Liu, G., Cui, Q., Huang, Z., Ye, X., & Cornelissen, J. H. (2021). New field wind manipulation methodology reveals adaptive responses of steppe plants to increased and reduced wind speed. Plant methods, 17(1), 1-16.
Zhang, X., Zhao, W., Wang, L., Liu, Y., Liu, Y., & Feng, Q. (2019). Relationship between soil water content and soil particle size on typical slopes of the Loess Plateau during a drought year. Science of the Total Environment, 648, 943-954.
Zhong, M., Wang, J., Liu, K., Wu, R., Liu, Y., Wei, X., . . . Shao, X. (2014). Leaf morphology shift of three dominant species along altitudinal gradient in an alpine meadow of the Qinghai-Tibetan Plateau. Polish Journal of Ecology, 62(4), 639-648.