簡易檢索 / 詳目顯示

研究生: 謝顯傑
Hsieh, Hsien-Chieh
論文名稱: 開發功能性光萃取微米結構於軟性光電元件應用之研究
Development of functional light-extraction microstructure for optoelectronic device applications
指導教授: 張天立
學位類別: 碩士
Master
系所名稱: 機電工程學系
Department of Mechatronic Engineering
論文出版年: 2013
畢業學年度: 101
語文別: 中文
論文頁數: 114
中文關鍵詞: 微透鏡陣列全填充因子擴散式微影PDMS
英文關鍵詞: Microlens array, Full Fill-Factor, Diffuser photolithography, PDMS
論文種類: 學術論文
相關次數: 點閱:395下載:5
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 隨著奈微米(Nano/Micro technology)科技的進步,光電產業界不斷往省能、低成本、可攜式方向邁進,人類對於光學元件的重視日以遽增。加上半導體製程技術的突破性發展,整合光學元件形成完整的微光學系統,為了增進微光學元件的功率與效能,許多以控制微光學為基礎的技術被研究發展。其中製造微透鏡陣列(Microlens array)的方式最為快速、簡單,具有大量陣列以及輕量化的優點。
    本研究微透鏡製程主要為改良LIGA-Like微成形技術,並結合擴散膜(Diffuser)與光罩製作微透鏡陣列(Microlens array)結構,我們將其稱為3D光擴散微影製程。這種光擴散方法結合光刻技術,製造出的軟性微透鏡陣列薄膜,具有高度可控(Well-control)形狀和接近100%的填充因子(High fill-factor),這種全填充因子的表現可稱為無縫(Gapless)微透鏡陣列。
    本研究是採以透光率達90%以上的聚二甲基矽氧烷(PDMS)作為微透鏡陣列的結構,PDMS可撓特性可整合在非平面元件上,達到微型化、微小化特性。對於外型的定義,透過弛垂方程式(Sag equation)擬合曲線來表示,進一步了解不同UV劑量下的外觀差異,最後對光學薄膜量測其光學性質。本研究使用雷射光束通過微透鏡陣列,觀察聚焦在焦平面的光斑點,並計算焦距與數值孔徑。結果發現隨著角度(0o, 30o, 60o)不同,光斑點(Spot)產生偏移變化,這個現象可被大量應用在光學感應器上(Optical sensor)、圖像感應器(Image sensor)。透過實驗研究與討論,本研究快速製造的微透鏡陣列,能夠有效幫助光學系統提高視角以及靈敏度。

    With the increasing downscaling of electro-optical components and the development of microelectromechanical systems (MEMS), microlens array is attracting more attention for various applications, including optical communications, image processing, lab-on-a-chip techniques, high-definition projection displays and other photonic devices. Hence, many manufacture processes for microlens have been described, such as the thermal reflow, laser micromachining, gay-scale mask, ink-jet printing and proton beam writing. The variety of microlens array can usually be employed for lighting design for improving their outcoupling efficiency or enhancing the light extraction efficiency. Compared with the conventional photolithography, a diffuser approach can be used in developing a process to fabricate the microlens array. The advantages of a diffuser include a simple process and shape control of microlens array. This study presents a simple and effective diffuser approach to fabricate a plastic microlens array with controllable shape and full fill-factor, and combined the methods of the soft lithography and plastic replication.
    It can be found that the microlens array of PDMS structures is an extremely high full fill-factor. The fill-factor in this study is approximately 100%. In conclusion, the full fill-factor PDMS microlens array can be successfully fabricated by a diffuser approach. The precise shape of microlens is needed by using the well-controlled process parameters. The curves of the microlens are fitted by using sag equation. Thereupon, this study can be helpful to a new route to range of functional optical applications.

    摘要 .................................................... i 英文摘要 ................................................ ii 誌謝.................................................... iii 總目錄................................................... iv 表目錄.................................................. vi 圖目錄 .................................................. vii 第一章 緒論 ............................................................................................................... 1 1.1微透鏡陣列簡介 ................................................................................... 1 1.2近代顯示器背景說明 ........................................................................... 4 1.3新一代軟性面板發展技術 ................................................................ 8 1.4微透鏡陣列與感測器 ......................................................................... 12 1.5微機電技術簡介 ................................................................................. 17 1.6研究動機與目的 ................................................................................. 19 第二章 理論與文獻探討 ......................................................................................... 20 2.1基礎光學 ............................................................................................. 20 2.2光萃取結構 ......................................................................................... 24 2.3微透鏡製造技術 ................................................................................. 30 第三章 研究設計與實驗規畫 ................................................................................. 46 3.1研究設計 ............................................................................................. 46 3.2光罩設計 ............................................................................................. 48 3.3擴散式微影技術 ............................................................................. 51 3.4光擴散角度 ......................................................................................... 57 3.5微型電鑄製程 ..................................................................................... 59 3.6實驗與量測設備 ................................................................................. 62 第四章 實驗結果與討論 ......................................................................................... 67 4.1微透鏡陣列之結構探討 ..................................................................... 67 4.1.1模造成形與翻模轉移 ........................................................... 67 4.1.2控制微透鏡外型之變因 ....................................................... 72 4.1.3微透鏡陣列之疏水結構 ....................................................... 78 4.1.4填充因子 ............................................................................... 82 4.1.5非球面之定義 ....................................................................... 87 4.2微透鏡陣列之光學描述 ..................................................................... 92 4.2.1折射式光學 ........................................................................... 92 4.2.2光學感測之特性 ................................................................... 98 第五章 結論與未來展望 ....................................................................................... 101 5.1結論 ................................................................................................... 101 5.2未來展望 ........................................................................................... 103 參考文獻 ................................................................................................................. 106

    J. S. Kim, D. S. Kim, J. J. Kang, J. D. Kim, C. J. Hwang, ”Replication and comparison of concave and convex microlens arrays of light guide plate for liquid crystal display in injection molding,” Polymer engineering and science, pp. 101-106 (2010)
    [2] C. Li, G. Hall, X. Zeng, D. Zhu, K. Eliceiri et al., ” Three-dimensional surface profiling and optical characterization of liquid microlens using a Shack–Hartmann wave front sensor,” American Institute of Physics, pp.1696-1697 (2011)
    [3] J. H. Karp, E. Tremblay, J. M. Hallas and J. E. Ford, “Orthogonal and secondary concentration in planar micro-optic solar collectors,” Optics Express, A673-A685, (2011)
    [4] E. T. Bishop, “The Light Field Camera: Extended Depth of Field, Aliasing, and Superresolution,” IEEE transactions on pattern analysis and machine intelligence, pp.972-986 (2012)
    [5] J. P. Yang, Q. Y. Bao, Z. Q. Xu, Y. Q. Li, J. X. Tang et al. “Light out-coupling enhancement of organic light-emitting devices with microlens array,” Applied Physics Letters, 223303 (1) - 223303 (3) (2010)
    [6] H. Ren, Y. H. Fan, Y. H. Lin, S. T. Wu, “Tunable-focus microlens arrays using nanosized polymer-dispersed liquid crystal droplets,” Optics Communications, pp.101-106 (2005)
    [7] Y. K. Ee, “Optimization of light extraction efficiency of III-nitride LEDs
    - 107 -
    With self-Assembled colloidal-based microlenses,” IEEE Journal of Selected Topics in Quantum Electronics, pp. 1218-1225 (2009)
    [8] E. Roy, B. Voisin, J. F. Gravel, R. Peytavi, D. Boudreau, T. Veres, “Microlens array fabrication by enhanced thermal reflow process: Towards efficient collection of fluorescence light from microarrays,” Microelectronic Engineering , pp. 2255–2261 (2009)
    [9] http://www.gizmag.com/microlens-arrays-via-hot-embossing/17390/
    [10] I. A. Grimaldi, S. Coppola, F. Loffredo, F. Villani, C. Minarini, V. Vespini, L. Miccio, S. Grilli, and P. Ferraro, “Printing of polymer microlenses by a pyroelectrohydrodynamic dispensing approach,” Optics Letters, pp. 2460-2462 (2012)
    [11] T. Klotzbuecher, D. Dadic, “Fabrication of micro-lenses using excimer laser ablation by means of laser-generated grey-tone-masks Proceedings of the SPIE,” pp. 75850C-11 (2010)
    [12] S. M. Kuo, C. H. Lin, “Fabrication of aspherical SU-8 microlens array utilizing novel stamping process and electro-static pulling method,” OPTICS EXPRESS, pp.19114–19119 (2010)
    [13] C. W. Huang, Y. C. Chen, S. W. Huang, F. S. Yang, S. H. Chen, Y. Y. Lin, S. H. Lu, L. J. Lin, “A study of the impact of the policy to phase out all incandescent lamps on electricity consumption in Taiwan,” (2009)
    [14] 管鴻,許進明,LED及OLED照明,科學發展483期,pp. 48-53 (2013)
    [15] H. Kawamoto, "The history of liquid-crystal display," Proceeding of the IEEE, Vol. 90, pp.406-500 (2002)
    - 108 -
    [16] http://www.kocpc.com.tw/archives/1608
    [17] https://www.msu.edu/~bibbing2/hdtutorial/lcd.html
    [18] H. J. Chiu, Y. K. Lo, K. J. Pai, S. J. Cheng, S. C. Mou, S. T. Lai, “Introduction to LED backlight driving techniques for liquid crystal display panels,” New developments in liquid crystals, pp. 207-218 (2009)
    [19] H. Liu, V. Avrutin, N. Izyumskaya, Ü. Özgür, and H. Morkoç, “Transparent conducting oxides for electrode applications in light emitting and absorbing devices ”, Superlattices and microstructures, Vol. 48, pp. 458-484 (2010)
    [20] M. S. Hwang, B. Y. Jeong, J. Moon, S. K. Chun, and J. Kim, “Inkjet-printing of indium tin oxide (ITO) films for transparent conducting electrodes, ” Materials science and engineering: B, Vol. 176, pp. 1128-1131 (2011)
    [21] J. Liu, D. Wu, and S. Zeng, “Influence of temperature and layers on the characterization of ITO films,” Journal of Materials Processing Technology, Vol. 209, pp. 3943-3948 (2009)
    [22] T. P. Muneshwar, V. Varma, N. Meshram, S. Soni, and R. O. Dusane, “Development of low temperature RF magnetron sputtered ITO films on flexible substrate ”, Solar Energy Materials and Solar Cells, Vol. 94, pp. 1448-1450 (2010)
    [23] Y. S. Kim, W. J. Hwang, K. T. Eun, and S. H. Choa, “ Mechanical reliability of transparent conducting IZTO film electrodes for flexible
    - 109 -
    panel displays ”, Applied Surface Science, Vol. 257, pp. 8134-8138 (2011)
    [24] http://www.tpca.org.tw/news_in.aspx?mnuid=1070&modid=26&nid=7888
    [25] M. W. Wang, W. C. Lin, M. H. Lee, “Fabrication of flexible microlens array film using roll-to-roll process,” J Engineering Manufacture, pp.227(4) 543–550 (2013)
    [26] H. Kawano, T. Okamoto, T. Matsuzawa, H. Nakajima, J. Makita, N. Fujiyama, E. Niikura, T. Kunieda, T. Minobe, “Compact image scanner with large depth of field by compound eye system,” Optics Express, pp.13532- 13538 (2012)
    [27] R. Yamazaki, A. Obana, M. Kimata, “Microlens for Uncooled Infrared Array Sensor,” Electronics and Communications in Japan, Vol. 96, No. 2 (2013)
    [28] http://tw.myblog.yahoo.com/3d-blog/article?mid=1050
    [29] http://excelmathmike.blogspot.tw/2011/06/its-not-clear-to-me-part-iv_23.html
    [30] T. E. Bishop, P. Favaro, "The light field Ccamera: extended depth of field, aliasing, and superresolution," IEEE transactions on pattern analysis and machine intelligence, VOL. 34, pp. 972-986 (2012)
    [31] M. Levoy, “Light Field Microscopy,” ACM Transactions on Graphics, pp.1-11 (2006)
    [32] B. C. Platt, R. Shack, "History and Principles of Shack-Hartmann
    - 110 -
    Wavefront Sensing," Journal of Refractive Surgery, pp.573-577, Vol 17 (2001) [33] 丁志明,方維倫,楊啟榮 等人, “微機電系統技術與應用,” 精密儀器發展中心, 第四章, pp.142 (2003)
    [34] Alex ryer, “Light measurement handbook,” International Light Inc. (1998)
    [35] Alma E. F. Taylor, “Illumination Fundamentals,” Rensselaer Polytechnic Institute (2000)
    [36] H. Yersin, “Triplet Emitters for OLED Applications. Mechanisms of Exciton Trapping and Control of Emission Properties,” Top curr chem, pp 1-26 (2004)
    [37] A. I. Zhmakin, “Enhancement of light extraction from light emitting diodes,” Physics Reports, pp. 189–241 (2011)
    [38] M. H. Lu, J. C. Sturm, “Optimization of external coupling and light emission in organic light-emitting devices: modeling and experiment,” American Institute of Physics, pp.595-604(10) (2002)
    [39] H. Y. Lin, Y. H. Ho, J. H. Lee, K. Y. Chen, J. H. Fang, S. C. Hsu, M. K. Wei, H. Y. Lin, J. H. Tsai, T. C. Wu, “Patterned microlens array for efficiency improvement of small-pixelated organic light-emitting devices,” Optics Express, Vol. 16, pp. 11044-11051 (2008)
    [40] H. Kwon, Y. Yee, C. H. Jeong, H. J. Nam, J. U. Bu, “A high-sag microlens array film with a full fill factor and its application to organic light emitting diodes”, Journal of Micromechanics and
    - 111 -
    Microengineering, 18 065003 (6pp) (2008)
    [41] S. Aratani, M. Adachi, M. Shimizu, T. Sugita, T. Shibasaki, K. Shimazaki, “Collimated light source using patterned organic light-emitting diodes and microlens,” Japanese journal of applied physics, Vol. 49, pp. 042101-042101 (2010)
    [42] B. K. Lee, J. M. Park, D. S. Kim, T. H. Kwon, “A simple fabrication and integration technique of microlens for microfluidic lab-on-a-chip by overflow of UV resin through holes”, Current applied physics, pp. 909-913 (2011)
    [43] D. Dyer, S. Shreim, S. Jayadev, V. Lew, E. Botvinick, ”Sequential shrink photolithography for plastic microlens arrays”, Applied Physics Letters, 99 034102 (3pp) (2011)
    [44] S. H. Eom, E. Wrzesniewski, J. Xue, “Close-packed hemispherical microlens arrays for light extraction enhancement in organic light-emitting devices”, Organic Electronics, pp. 472-476 (2011)
    [45] V. Lin, H. C. Wei, H. T. Hsieh, G. D. J. Su, “An optical wavefront sensor based on a double layer microlens array”, Sensors, pp. 10293-10307 (2011)
    [46] X. H. Li, R. Song, Y. K. Ee, P. Kumnorkaew, J. F. Gilchrist, N. Tansu, “Light extraction efficiency and radiation patterns of III-nitride light-emitting diodes with colloidal microlens arrays with various aspect ratios”, IEEE photonics journal, Vol. 3, pp.489-499 (2011)
    [47] H. C. Wei, G. D. J. Su, “Fabrication of a transparent and self-assembled
    - 112 -
    microlens array using hydrophilic effect and electric field pulling”, Journal of Micromechanics and Microengineering, 025007(8pp) (2012)
    [48] H. Zhang, L. Li, D. L. Mccray, D. Yao, A. Y. Yi, “A microlens array on curved substrates by 3D micro projection and reflow process”, Sensors and Actuators A, pp. 242– 250 (2012)
    [49] H. Liu, F. Chen, Q. Yang, P. Qu, S. He, “Fabrication of bioinspired omnidirectional and gapless microlens array for wide field-of-view detections”, Applied Physics Letters, pp.133701-3 (2012)
    [50] J. Yeon, J. H. Lee, H. S. Lee, H. Song, Y. K. Mun, Y. S. Choi, H. Y. Choi, S. Lee, J. B. Yoon, “An effective light-extracting microstructure for a single-sheet backlight unit for liquid crystal display”, Journal of Micromechanics and Microengineering, 095006 (9pp) (2012)
    [51] H. D. Kim, G. W. Yoon, J. Yeon, J. H. Lee, J. B. Yoon, “Fabrication of a uniform microlens array over a large area using self-aligned diffuser lithography (SADL),” Journal of Micromechanics and Microengineering, 045002 (7pp) (2012)
    [52] SABIC Innovative Plastics, “Illuminex* diffuser films,” (2008)
    [53] M. C. Chou, H. Yang, S. H. Yeh, “Microcomposite electroforming for LIGA technology,” Microsystem technologies, pp. 36-39 (2001)
    [54] 楊啟榮, “微系統LIGA製程之精密電鑄技術,” 科儀新知, pp.33-45 (2001)
    [55] H. Yang , C. T. Pan, M. C. Chou, “Ultra-fine machining tool/molds by LIGA technology,” Journal of Micromechanics and Microengineering,
    - 113 -
    pp. 94–99 (2001)
    [56] K. H. Liu, M. F. Chen, C. T. Pan, M. Y. Chang, W. Y. Huang, “Fabrication of various dimensions of high fill-factor micro-lens arrays for OLED package,” Sensors and Actuators A: Physical, pp.126-134 (2010)
    [57] A. J. Krmpot, G. J. Tserevelakis, B. D. Muri´c, G. Filippidis, D. V. Panteli´c, “3D imaging and characterization of microlenses and microlens arrays using nonlinear microscopy,” Journal of physics D: Applied physics, 195101 (9pp) (2013)
    [58] A. Bateni, S. Laughton, H. Tavana, S. S. Susnar, A. Amirfazli, A.W. Neumann, “Effect of electric fields on contact angle and surface tension of drops,” Journal of Colloid and Interface Science, pp. 215–222 (2005)
    [59] B. Bhushan, Y. C. Jung, K. Koch, “Micro-, nano- and hierarchical structures for superhydrophobicity, self-cleaning and low adhesion,” The Royal Society, pp. 1631–1672 (2009)
    [60] H. Yang, C. K. Chao, M. K. Wei, C. P. Lin, “High fill-factor microlens array mold insert fabrication using a thermal reflow process,” Journal of Micromechanics and Microengineering, pp. 1197–1204 (2004)
    [61] S. K. Arya, P. R. Solanki, M. Datta, B. D. Malhotra, “Recent Advances in Self-assembled Monolayers Based Biomolecular Electronic Devices,” Biosensors and Bioelectronics, Vol. 24, pp. 2810-2817 (2009)
    [62] S. Vaddiraju, I. Tomazos, D. J. Burgess, F. C. Jain, F. Papadimitrakopoulos, “Emerging synergy between nanotechnology and implantable biosensors : A review,” Biosensors and bioelectronics, Vol.
    - 114 -
    25, pp. 1553–1565 (2010)
    [63] Sensors : technologies and global markets, BCC market research reports (2011)
    [64] R. Thusu, “Strong growth predicted for biosensors market,” Frost & sullivan market research reports (2010)
    [65] B. K. Lee, J. M. Park, D. S. Kim, T. H. Kwon, “A simple fabrication and integration technique of microlens for microfluidic lab-on-a-chip by overflow of UV resin through holes,” Current applied physics, pp. 909-913 (2011)

    下載圖示
    QR CODE