研究生: |
朱美霖 Chu, Mei-Lin |
---|---|
論文名稱: |
季內時間尺度的颱風模擬:高解析度模式(HiRAM)25和50公里 Typhoon Simulations on Subseasonal Timescale in HiRAM at 25 and 50km |
指導教授: | 鄒治華 |
學位類別: |
碩士 Master |
系所名稱: |
地球科學系 Department of Earth Sciences |
論文出版年: | 2018 |
畢業學年度: | 106 |
語文別: | 中文 |
論文頁數: | 61 |
中文關鍵詞: | 季內振盪 、高解析度大氣模式 、颱風模擬 |
DOI URL: | http://doi.org/10.6345/THE.NTNU.DES.017.2018.B07 |
論文種類: | 學術論文 |
相關次數: | 點閱:135 下載:10 |
分享至: |
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
本研究主要分析高解析度大氣模式HiRAM之25km與50km模擬場對於在季內時間尺度的西北太平洋颱風活動模擬情況。首先檢視氣候特徵,其後進行季內振盪東西風相位時期模擬之探討。
颱風氣候特徵模擬之檢視,分為西北太平洋全域以及登陸侵襲東亞分區域等兩部分。西北太平洋全域的模擬結果顯示,兩模式模擬場對於颱風活動的空間分布掌握良好,颱風大多數生成在季風槽區與大尺度的東西風輻合區,與觀測一致。但是由於模擬的季風槽偏強,模式傾向高估颱風生成個數。在相同的颱風篩選條件門檻下,HiRAM 25km模擬的颱風生成個數較接近於觀測場,表現優於HiRAM 50km。颱風強度方面,模擬場傾向低估;以觀測場強度為基準的比較結果顯示,HiRAM 25km能模擬三級颱風(TY3)以上的強度,表現明顯優於HiRAM 50km。
登陸侵襲東亞分區域部分,為將行經東亞之颱風依其登陸侵襲區域作分類來比較;即登陸侵襲臺灣/中國大陸東岸區(TWCN)、南海區(SCS)與日本區(JP)等三類。結果顯示,HiRAM 50km對於侵襲TWCN與SCS類颱風之生成個數及通過頻率之掌握度相對於侵襲JP類颱風者佳,於侵襲JP類颱風之生成個數則明顯高估而通過頻率分布偏北。HiRAM 25km對於侵襲TWCN與SCS類颱風之生成個數及通過頻率模擬與觀測場相似,並能改善HiRAM 50km侵襲JP類颱風之生成個數高估和通過頻率分布偏北的情形。
季內振盪西(東)風相位期間,大尺度環境場呈現氣旋式(反氣旋式)環流,颱風生成機率較高(較低)。觀測場統計數據顯示,颱風在西風相位時期之生成機率約為東風相位時期的2倍。HiRAM 25km能夠良好掌握東西風相位期之間颱風生成機率之差異,HiRAM 50km則無法掌握此差異性。
在環境型態方面,西風相位時期,季內振盪之氣旋式環流加強季風槽,環境有利於颱風生成與發展,大尺度環流與颱風生成之間的關係與氣候場相似,模式掌握度較高。東風相位時期,季內振盪之反氣旋式環流抵消季風槽,環境不利於颱風生成與發展,大尺度環流與颱風生成之間的關係不明確,模式掌握度降低。HiRAM 25km雖然於東風相位時期略高估臺灣附近之颱風通過頻率,但仍能夠良好模擬東西風相位期之間颱風活動分布特徵之差異性。HiRAM 50km於東風相位時期明顯高估臺灣附近之颱風通過頻率,導致東西風相位期之間颱風活動分布特徵差異不明顯。
數據統計以及空間型態等分析結果顯示,HiRAM 25km對於季內時間尺度之颱風活動具有相當的模擬能力。
中央氣象局,2007:侵臺颱風綱要表。
陳冠杰,2010:秋季熱帶氣旋能量之年代際變化探討。國立臺灣師範大學地球科學系碩士論文。
Bengtsson, L., M. Botzet, and M. Esch, 1996: Will greenhouse gas-induced warming over the next 50 years lead to higher frequency and greater intensity of hurricanes? Tellus, 48A, 57-73, doi: 10.1034/j.1600-0870-.1996.00004.x.
Bengtsson, L., K. Hodges, and M. Esch, 2007a: Tropical Cyclones in a T159 Resolution Global Climate Model: Comparison with Observations and Re-analyses. Tellus, 59A, 396-416.
Camargo, S. J., A. W. Robertson, S. J. Gaffney, P. Smyth, and M. Ghil, 2007: Cluster Analysis of Typhoon Tracks. Part I: General Properties. J. Climate, 20, 3635-3653, doi:10.1175/JCLI4188.1.
Camargo, S. J., 2013: Global and Regional Aspects of Tropical Cyclone Activity in the CMIP5 Models. J. Climate, 26, 9880-9902.
Chauvin, F., J.-F. Royer, and M. Déqué, 2006: Response of hurricane-type vortices to global warming as simulated by ARPEGE-Climat at high resolution. Climate Dyn., 27, 377-399.
Chen, J. H. and S. J. Lin, 2011: The remarkable predictability of inter-annual variability of Atlantic hurricanes during the past decade. Geophys. Res. Lett., 38, L11804, doi:10.1029/2011GL047629.
Daubechies, I., 1988: Orthonormal Bases of Compactly Supported Wavelets. Commun. Pure Appl. Math., 41, 909-996, doi:10.1002/cpa.3160410705.
Emanuel, K. A., and D. S. Nolan, 2004: Tropical cyclone activity and global climate. Preprints, 26th Conf. on Hurricanes and Tropical Meteorology, Miami, FL, Amer. Meteor. Soc., 240-241.
Emanuel, K. A., 2010: Tropical Cyclone Activity Downscaled from NOAA-CIRES Reanalysis, 1908-1958. J. Adv. Model. Earth Syst., 2. doi:10.3894/JAMES.2010.2.1.
Emanuel, K. A., 2013: Downscaling CMIP5 climate models show increased tropical cyclone activity over the 21st century. Proc. Natl. Acad. Sci. USA, 110, 12 219-12 224.
Gray, W. M., 1979: Hurricanes: Their formation, structure, and likely role in the tropical circulation. Meteorology over the Tropical Oceans, D. B. Shaw, Ed., Royal Meteorological Society, 155-218.
Gray, W. M., 1998: The Formation of Tropical Cyclones. Meteor. Atmos. Phys., 67, 37-69.
Harris, L. M. and S. J. Lin, 2013: A two-way nested global-regional dynamical core on the cubed-sphere grid. Mon. Weather Rev., 141, 283-306, doi: 10.1175/MWR-D-11- -00201.1.
Ho, C. H., J. J. Baik, J. H. Kim, D. Y. Gong, and C. H. Sui, 2004: Interdecadal Changes in Summertime Typhoon Tracks. J. Climate, 17, 1767-1776, doi:10.1175/1520-0442(2004)017 <1767: ICISTT> 2.0.CO;2.
JTWC, 2008: Joint Typhoon Warning Center best track data site. Available at https://metocph.nmci.navy.mil/jtwc. php.
Knutson T. R., J. J. Sirutis, S. T. Garner, I. M. Held, and R. E. Tuleya, 2007: Simulation of the Recent Multidecadal Increase of Atlantic Hurricane Activity Using an 18-km-grid Regional Model. Bull. Amer. Meteror. Soc. 88, 1549-1565.
Knutson, T. R., and Coauthors, 2013: Dynamical Downscaling Projections of Twenty-First-Century Atlantic Hurricane Activity: CMIP3 and CMIP5 Model-Based Scenarios. J. Climate, 26, 6591-6617.
Liebmann, B., H. H. Hendon, and J. D. Glick, 1994: The Relationship Between Tropical Cyclones of the Western Pacific and Indian Oceans and the Madden-Julian Oscillation. J. Meteor. Soc. Japan, 72, 401-411.
Maloney, E. D., and D. L. Hartmann, 2001: The Madden-Julian Oscillation, Barotropic Dynamics, and North Pacific Tropical Cyclone Formation. Part I: Observations. J. Atmos. Sci., 58, 2545-2558, doi:10.1175/1520-0469(2001)058,2545:TMJOBD.2.0.CO;2.
Maloney, E. D., and M. J. Dickinson, 2003: The Intraseasonal Oscillation and the Energetics of Summertime Tropical Western North Pacific Synoptic-Scale Disturbances. J. Atmos. Sci., 60, 2153-2168, doi:10.1175/1520-0469(2003)060,2153:TIOATE.2.0.CO;2.
McDonald, R. E., D. G. Bleaken, D. R. Cresswell, V. D. Pope, and C. A. Senior, 2005: Tropical Storms: representation and diagnosis in climate models and the impacts of climate change. Clim. Dyn., 25, 19-36, doi:10.1007/s00382-004-0491-0.
Murakami, H., and Coauthors, 2015: Simulation and Prediction of Category 4 and 5 Hurricanes in the High-Resolution GFDL HiFLOR Coupled Climate Model. J. Climate, 28, 9058-9079.
Putman, W. M. and S. J. Lin, 2007: Finite-volume transport on various cubed-sphere grids. J. Comput. Phys., 227, 55-78, doi: 10.1016/j.jcp.2007.07.022.
Saha, S., S. Moorthi, H. L. Pan, X. Wu, J. Wang, S. Nadiga, P. Tripp, R. Kistler, J. Woollen, D. Behringer, H. Liu, D. Stokes, R. Grumbine, G. Gayno, J. Wang, Y. T. Hou, H. Y. Chuang, H. M. H. Juang, J. Sela, M. Iredell, R. Treadon, D. Kleist, P. Van Delst, D. Keyser, J. Derber, M. Ek, J. Meng, H. Wei, R. Yang, S. Lord, H. Van Den Dool, A. Kumar, W. Wang, C. Long, M. Chelliah, Y. Xue, B. Huang, J. K. Schemm, W. Ebisuzaki, R. Lin, P. Xie, M. Chen, S. Zhou, W. Higgins, C. Z. Zou, Q. Liu, Y. Chen, Y. Han, L. Cucurull, R. W. Reynolds, G. Rutledge, and M. Goldberg, 2010: The NCEP Climate Forecast System Reanalysis. Bull. Amer. Meteorol. Soc., 91, 1015-1057, doi:10.1175/2010BAMS3001.1.
Simpson, R. H. and H. Riehl, 1981: The Hurricane and Its Impact. Louisiana State University Press, Baton Rouge, 398 pp.
Taylor, K. E., R. J. Stouffer, and G. A. Meehl, 2012: An Overview of CMIP5 and the Experiment Design. Bull. Amer. Meteor. Soc., 93, 485-498.
Tsou, C.-H., H.-H. Hsu, and P.-C. Hsu, 2014: The Role of Multiscale Interaction in Synoptic-Scale Eddy Kinetic Energy over the Western North Pacific in Autumn. J. Climate, 27, 3750-3766.
Tsou C. -H., P. -Y. Huang, C. -Y. Tu, C. -T. Chen, T. -P. Tzeng, C. -T. Cheng, 2016: Present Simulation and Future Projection of Typhoon Activity over Western North Pacific and Taiwan/East Coast of China in 20-km HiRAM Climate Model. TAO, Vol. 27, No. 5, 687-703.
Vitart, F., J. L. Anderson, and W. F. Stern, 1997: Simulation of Interannual Variability of Tropical Storm Frequency in an Ensemble of GCM Integrations. J. Climate, 10, 745-760, doi: 10.1175/1520-0442-(1997)010<0745:SOIVOT>2.0.CO;2.
Vitart, F., D. Anderson, and T. Stockdale, 2003: Seasonal Forecasting of Tropical Cyclone Landfall over Mozambique. J. Climate, 16, 3932-3945, doi:10.1175/1520-0442(2003)016<3932:SFOTCL>2.0.CO; 2.
Wu, L. and B. Wang, 2004: Assessing Impacts of Global Warming on Tropical Cyclone Tracks. J. Climate, 17, 1686-1698, doi:10.1175/1520-0442-(2004)017<1686:AIOGWO>2.0.CO;2.
Zehr, R. M., 1992: Tropical Cyclogenesis in the Western North Pacific. NOAA Tech. Rep. NES-DIS 61, 181 pp. [Available from U.S. Department of Commerce, NOAA/NESDIS, 5200 Auth Rd., Washington, DC 20233.]
Zhang, C., and Y. Wang, 2017: Projected Future Changes of Tropical Cyclone Activity over the Western North and South Pacific in a 20-km-Mesh Regional Climate Model. J. Climate, 30, 5923-5941, doi:10.1175/JCLI-D-16-0597.1.
Zhang, L., K. B. Karnauskas, J. P. Donnelly, and K. Emanuel, 2017: Response of the North Pacific Tropical Cyclone Climatology to Global Warming: Application of Dynamical Downscaling to CMIP5 Models. J. Climate, 30, 1233-1243, doi: 10.1175/JCLI-D-16-0496.1.
Zhao, M., I. M. Held, S. J. Lin, and G. A. Vecchi, 2009: Simulations of Global Hurricane Climatology, Interannual Variability, and Response to Global Warming Using a 50-km Resolution GCM. J. Climate, 22, 6653-6678, doi:10.1175/2009JCLI3049.1.