研究生: |
謝云靜 |
---|---|
論文名稱: |
表面修飾樹狀金電極及其SERS應用 Preparation of Surface-modified Gold Dendrites and Their SERS Applications |
指導教授: | 洪偉修 |
學位類別: |
碩士 Master |
系所名稱: |
化學系 Department of Chemistry |
論文出版年: | 2014 |
畢業學年度: | 102 |
語文別: | 中文 |
論文頁數: | 79 |
中文關鍵詞: | 樹狀金 、表面增強拉曼 、低電位沉積 |
英文關鍵詞: | Gold Dendrites, SERS, Under-potential deposition |
論文種類: | 學術論文 |
相關次數: | 點閱:158 下載:3 |
分享至: |
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
本篇論文主要探討影響樹狀金電極生長的因素並藉由分子自主裝在樹狀電極上以增進表面增強拉曼。樹狀金電極是由添加半胱胺酸並以脈衝式電化學沉積法製備而成,在酸性的環境下製備,金還原的速率較快其次是中性最後是鹼性。當半胱胺酸的濃度越高時,樹狀金電極的骨幹及分支越細。所添加的半胱胺酸可以替換成其他具有硫醇官能基的分子。
以低電位沉積法分別修飾銀和銅於樹狀金電極表面,應用於SERS活性基底,並用X射線光電子能譜(XPS)進行結構鑑定,其中銀修飾的電極SERS活性最佳。將60nm膠體金修飾在樹狀金電極上形成複合材料,可提升3倍的拉曼訊號。
將不同鏈長的硫醇分子修飾於樹狀金,探討電磁場增強機制,得到訊號強度與距離關係為P_SERS∝(1/d)^10。在以不同官能基的對苯硫醇修飾,探討化學增強機制,-OH及-NH2的能階差較小,有化學增強作用;-CH3、-H和-COOH則沒有顯示。
The goal of the thesis is to investigate the factors affecting the growth of gold dendrites. The modification of self-assembled thiol molecules on gold dendrites is used to improve SERS enhancements. Gold dendrites are deposited on glassy carbon electrode by using pulsed electrochemical deposition in the presence of cysteine. The growth of dendrites is faster in the acidic environment than in the neutral and alkaline. The backbone and branch of dendrites is thinner at higher concentration of cysteine. Cysteine can be replaced by other molecules with a functional group of thiol.
The silver and copper layers are electrodeposited on the gold dendrites at low potential. The resulting deposited layers are characterized with X-ray photoelectron spectroscopy (XPS) and are used to serve as the SERS active substrates. The silver-modified dendrites have the best SERS activity among the studied electrodes. The SERS activity of gold dendrites can be enhanced three times by deposition of 60-nm gold nanoparticles.
The gold dendrites modified with different chain-length thiols SERS enhancement activities which follow the relationship of P_SERS∝(1/d)^10 according to electromagnetic mechanism. Phenyl thiols with different functional groups are attached to study the chemical enhancement mechanism of SERS enhancement. The -OH and -NH2 groups have the low energy gaps and improve the chemical enhancement, but -CH3, -H and -COOH does not show the SERS enhancement.
(1) Smekal, A. Naturwissenschaften 1923, 11, 873.
(2) Krishnan, C. V. R. a. K. S. Nature 1928, 122, 169.
(3) Kneipp, J.; Wittig, B.; Bohr, H.; Kneipp, K.; Kneipp, J.; Wittig, B.; Bohr, H.; Kneipp, K. Theoretical Chemistry Accounts 2010, 125, 319.
(4) Nie, S.; Emory, S. R. Science 1997, 275, 1102.
(5) M. Fleischmann, P. J. H., and A. J. McQuillan. Chem. Phys.Lett 1974, 26, 163.
(6) Kerker, M.; Wang, D. S.; Chew, H. Appl. Opt. 1980, 19, 3373.
(7) D.L. Jeanmaire, R. P. V. D. J. Electroanal. Chem 1977, 84, 1.
(8) Sau, T. K.; Rogach, A. L. Advanced Materials 2010, 22, 1781.
(9) Jena, B. K.; Raj, C. R. Langmuir 2007, 23, 4064.
(10) Daniel, M.-C.; Astruc, D. Chemical Reviews 2003, 104, 293.
(11) Yoo, S. M.; Kang, T.; Kang, H.; Lee, H.; Kang, M.; Lee, S. Y.; Kim, B. Small 2011, 7, 3254.
(12) Huang, Z.; Meng, G.; Huang, Q.; Yang, Y.; Zhu, C.; Tang, C. Advanced Materials 2010, 22, 4136.
(13) Hu, Y.; Pan, N.; Zhang, K.; Wang, Z.; Hu, H.; Wang, X. physica status solidi (a) 2007, 204, 3398.
(14) Lu, G.; Li, C.; Shi, G. Chemistry of Materials 2007, 19, 3433.
(15) Qin, Y.; Song, Y.; Sun, N.; Zhao, N.; Li, M.; Qi, L. Chemistry of Materials 2008, 20, 3965.
(16) Tang, X.-L.; Jiang, P.; Ge, G.-L.; Tsuji, M.; Xie, S.-S.; Guo, Y.-J. Langmuir 2008, 24, 1763.
(17) Zhang, J.; Meng, L.; Zhao, D.; Fei, Z.; Lu, Q.; Dyson, P. J. Langmuir 2008, 24, 2699.
(18) Feng, J.-J.; Li, A.-Q.; Lei, Z.; Wang, A.-J. ACS Applied Materials & Interfaces 2012, 4, 2570.
(19) Li, F.; Han, X.; Liu, S. Biosensors and Bioelectronics 2011, 26, 2619.
(20) Lin, T.-H.; Lin, C.-W.; Liu, H.-H.; Sheu, J.-T.; Hung, W.-H. Chemical Communications 2011, 47, 2044.
(21) Huang, C.-C.; Yang, Z.; Lee, K.-H.; Chang, H.-T. Angewandte Chemie International Edition 2007, 46, 6824.
(22) Ghosh, S. K.; Pal, T. Chemical Reviews 2007, 107, 4797.
(23) Pande, S.; Ghosh, S. K.; Praharaj, S.; Panigrahi, S.; Basu, S.; Jana, S.; Pal, A.; Tsukuda, T.; Pal, T. The Journal of Physical Chemistry C 2007, 111, 10806.
(24) Porter, M. D.; Lipert, R. J.; Siperko, L. M.; Wang, G.; Narayanan, R. Chemical Society Reviews 2008, 37, 1001.
(25) Maher, R. C.; Galloway, C. M.; Le Ru, E. C.; Cohen, L. F.; Etchegoin, P. G. Chemical Society Reviews 2008, 37, 965.
(26) Graham, D.; Thompson, D. G.; Smith, W. E.; Faulds, K. Nat Nano 2008, 3, 548.
(27) Cao, Y. C.; Jin, R.; Mirkin, C. A. Science 2002, 297, 1536.
(28) Camden, J. P.; Dieringer, J. A.; Zhao, J.; Van Duyne, R. P. Accounts of Chemical Research 2008, 41, 1653.
(29) Anker, J. N.; Hall, W. P.; Lyandres, O.; Shah, N. C.; Zhao, J.; Van Duyne, R. P. Nat Mater 2008, 7, 442.
(30) Kneipp, K.; Kneipp, H.; Kartha, V. B.; Manoharan, R.; Deinum, G.; Itzkan, I.; Dasari, R. R.; Feld, M. S. Physical Review E 1998, 57, R6281.
(31) Kneipp, K.; Wang, Y.; Kneipp, H.; Perelman, L. T.; Itzkan, I.; Dasari, R. R.; Feld, M. S. Physical Review Letters 1997, 78, 1667.
(32) Katrin, K.; Harald, K.; Irving, I.; Ramachandra, R. D.; Michael, S. F. Journal of Physics: Condensed Matter 2002, 14, R597.
(33) Kneipp, K.; Kneipp, H.; Manoharan, R.; Hanlon, E. B.; Itzkan, I.; Dasari, R. R.; Feld, M. S. Appl. Spectrosc. 1998, 52, 1493.
(34) Li, W.; Camargo, P. H. C.; Lu, X.; Xia, Y. Nano Letters 2008, 9, 485.
(35) Zhang, B.; Wang, H.; Lu, L.; Ai, K.; Zhang, G.; Cheng, X. Advanced Functional Materials 2008, 18, 2348.
(36) Nomura, K.; Shibata, N.; Maeda, M. Journal of the Electrochemical Society 2002, 149, F76.
(37) Herrero, E.; Buller, L. J.; Abruna, H. D. Chem. Rev. 2001, 101, 1897.
(38) Kolb, D. M.; Przasnyski, M.; Gerischer, H. J. Electroanal. Chem. 1974, 54.
(39) Sudha, V.; Sangaranarayanan, M. V. Journal of Physical Chemistry B 2002, 106, 2699.
(40) Arihara, K.; Ariga, T.; Takashima, N.; Arihara, K.; Okajima, T.; Kitamura, F.; Tokuda, K.; Ohsaka, T. Physical Chemistry Chemical Physics 2003, 5, 3758.
(41) Kneipp, K.; Kneipp, H.; Itzkan, I.; Dasari, R. R.; Feld, M. S. Chemical Reviews 1999, 99, 2957.
(42) Campion, A.; Kambhampati, P. Chemical Society Reviews 1998, 27, 241.
(43) Brolo, A. G.; Irish, D. E.; Smith, B. D. Journal of Molecular Structure 1997, 405, 29.
(44) Jensen, L.; Schatz, G. C. The Journal of Physical Chemistry A 2006, 110, 5973.
(45) 汪建民. ,材料分析 ; 中國材料科學學會, 1998.
(46) 林麗娟. 工業材料, 86, 100.
(47) I. Tiginyanu, S. L., H. Föll ,V. Ursachi. Porous III-V Semiconductors.
(48) Horton, J. H. Queens Chemistry
(49) A. J. Bard; L. R. Faulkner. Electrochemical Methods fundamentals and application, John Wiley & Sons, Inc, New York, 227, 2001.
(50) Harvey, D. ChemWiki.
(51) Murphy, P. J.; LaGrange, M. S. Geochimica et Cosmochimica Acta 1998, 62, 3515.
(52) Ji, X.; Song, X.; Li, J.; Bai, Y.; Yang, W.; Peng, X. Journal of the American Chemical Society 2007, 129, 13939.
(53) Krug, J. T.; Wang, G. D.; Emory, S. R.; Nie, S. Journal of the American Chemical Society 1999, 121, 9208.
(54) Kennedy, B. J.; Spaeth, S.; Dickey, M.; Carron, K. T. The Journal of Physical Chemistry B 1999, 103, 3640.
(55) Yoon, J. H.; Park, J. S.; Yoon, S. Langmuir 2009, 25, 12475.
(56) Park, W.-H.; Kim, Z. H. Nano Letters 2010, 10, 4040.