簡易檢索 / 詳目顯示

研究生: 郭書瑋
Shu-Wei Kuo
論文名稱: 非接觸式配向層的製備與表面特性研究 ─離子束轟擊聚醯亞胺法和分子自組裝法
Preparation and characterization of non-contact alignment layer ─ Ion beam bombarded and molecular self-assembled techniques
指導教授: 洪偉修
Hung, Wei-Hsiu
許瑤真
Hsu, Yao-Jane
學位類別: 碩士
Master
系所名稱: 化學系
Department of Chemistry
論文出版年: 2007
畢業學年度: 95
語文別: 中文
論文頁數: 112
中文關鍵詞: 配向層離子束自組裝同步輻射X光近緣吸收微結構光譜X光電子能譜
英文關鍵詞: alignment, ion beam bombarded, self-assembled, NEXAFS, XPS
論文種類: 學術論文
相關次數: 點閱:244下載:1
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 液晶配向層(alignment)是LCD中重要的元件之一,隨著顯示器尺寸的上升和品質的要求,非接觸的配向技術逐漸取代傳統的刷膜配向方式。本研究內容主要分為兩個部份,分別是利用氬、氮及氫離子束轟擊(ion beam bombarded)聚醯亞胺薄膜,以及在類鑽碳表面成長矽烷分子自組裝(molecular self-assembled)薄膜,這兩種非接觸的配向方式製備液晶的配向層,並利用同步輻射X光近緣吸收微結構光譜(NEXAFS)及X光電子能譜(XPS)的技術,研究配向處理後薄膜表面的分子排列位向(orientation order)與化學結構組成(chemical composition)所產生影響。
    研究結果顯示,PMDA-ODA聚亞醯胺薄膜在較低的離子能量轟擊下,會有較佳的鍵結異向性,以125 eV的氬離子束施予樣品51015 ions/cm2的暴露量後,可以得到最佳的配向效果;雖然氮離子處理之樣品配向效果不如氬離子,但氮離子束可在較寬的能量及暴露量範圍內,得到一定程度的配向效果;而氫離子束則是最不利於PMDA-ODA材料上的配向。在化學結構上,可以觀察到C=C及C=O鍵結有明顯的破壞情形,並且各元素間,是隨著入射的能量及離子數量選擇性的脫離表面。除了鍵結的破壞以外,也有C=N、N-O及-COO-等新的化學結構生成。
    另外,我們也成功地在類鑽碳薄膜上成長3-Aminopropyl -triethoxysilane(APS)自組裝分子膜,並在進一步修飾1-Isothiocyanato-naphthalene(NIC)於APS分子末端, 利用NIC分子上naphthalene基團特定的排列位向,放大氫離子束轟擊配向的效果;最佳的處理條件為依序浸泡30分鐘APS溶液及2小時NIC溶液,而其表面上整體芳香環的雙色性比率(dichroic ratio)為氫離子束轟擊樣品的1.5倍。

    The liquid crystal alignment is an important issue in liquid crystal display (LCD). With the increasing of screen sizes, non-contact alignment techniques are developed to replace the conventional mechanical rubbing of polyimide film. Our research is divided into two main parts. The first part involves using argon, hydrogen, and nitrogen ion beams to bombard polyimde film with different ion energies and dosage to produce different alignment layers; the second part involves using naphthalene functionalized siloxane self-assemb on diamond-like carbon film. Using polarization-dependent near edge X-ray absorption fine structure (NEXAFS) and X-ray photoelectron spectra (XPS), the planar and out-of-plane orientation order and chemical composition of the alignment surfaces are investigated.
    Our results show that the C=C and C=O bonds in PMDA-ODA polyimide films are selectively depredated depending on the energy level and dosage of the ion beam. In addition to bond breaking, new bonds – such as C=N, N-O, and –COO- – are formed after the ion beam treatment. As for the surface anisotropy, low energy treated PMDA-ODA polyimide have more preferential asymmetric alignment, especially in the case of argon ion bombardment with energy 125 eV and dosage 51015 ions/cm2. However, nitrogen ion bombardment shows the surface alignment in a large range of ion energy and dosage because its radius and mass is relatively small. The bombardment of hydrogen ion results in hydrogenation of the aromatic ring to form saturated alkanes and therefore, is not a good ion source for PI alignment.
    In the second part, we successfully modified diamond-like carbon (DLC) with 3-aminopropyl-triethoxysilane by the self-assembly method and grafted the naphthalene ring onto its terminal group. This procedure can amplify the alignment effect resulting from hydrogen ion beam bombardment (H-DLC). The optimal way of preparing such a surface is to immerse the H-DLC in 3-aminopropyl-triethoxysilane solution for 30 minutes and 1-Isothiocyanato-naphthalene solution for 2 hours in sequence. The dichroic ratio of the aromatic ring on the resulting surface is 1.5 times of that without molecular attachment.

    壹、緒論 1-1 前言 ………………………………………………… 1 1-2 研究動機 …………………………………………… 4 貳、液晶配向之文獻回顧 2-1 液晶配向層材料 …………………………………… 6 2-1.1 聚亞醯胺 ………………………………………… 6 2-1.2 類鑽碳薄膜 ……………………………………… 8 2-3 離子束轟擊配向 …………………………………… 9 2-4 分子自組裝配向…………………………………… 11 2-4.1 自組裝單分子膜………………………………… 11 2-2.2 液晶配向上的應用……………………………… 14 參、藥品及設備 3-1 藥品 ………………………………………………… 18 3-2 電漿反應系統 ……………………………………… 19 3-3 X光光電子能譜術(XPS)………………………… 23 3-4 近緣X光吸收精細結構光譜(NEXAFS)………… 26 3-4.1 NEXAFS原理 ……………………………………… 26 3-4.2 同步輻射光源 …………………………………… 29 3-5 超高真空系統 ……………………………………… 32 肆、實驗方法 4-1 ITO玻璃之清潔 …………………………………… 34 4-2 製作離子束轟擊配向樣品 ………………………… 35 4-2.1 旋轉塗佈聚醯亞胺薄膜 ………………………… 35 4-2.2 氣相沈積類碳鑽薄膜 ……………………………… 36 4-2.3 離子束轟擊處理 ………………………………… 37 4-3 製作分子自組裝配向樣品 ……………………………38 4-3.1 電漿活化處理………………………………………38 4-3.2 SAMs的製備 ……………………………………… 39 4-4 靜態接觸角量測 …………………………………… 41 4-5 XPS及NEXAFS的量測與數據處理 ………………… 41 4-5.1 真空系統樣品傳送 ……………………………… 41 4-5.2 in-plane與out-of-plane的NEXAFS量測 ……42 4-5.3 NEXAFS 數據處理 ……………………………… 43 4-5.4 XPS 數據處理 ……………………………………45 伍、結果與討論 5-1 離子束轟擊PMDA-ODA之表面方向異性 ……………46 5-1.1 不同離子束及能量變化之比較 ………………… 46 5-1.2 不同離子束及暴露量變化之比較 ……………… 53 5-1.3 定向刷膜與離子束轟擊NEXAFS圖譜比較 ………60 5-2 PMDA-ODA表面組成及結構的變化 …………………63 5-2.1 空白與刷膜配向PMDA-ODA組成的鑑定………… 63 5-2.2 離子束轟擊處理後之精細結構變化 …………… 68 5-2.3 離子束轟擊處理後之XPS組成變化 ………………77 5-3 類鑽碳上分子自組裝薄膜的鑑定 ……………………87 5-4 類鑽碳薄膜修飾後的表面配向性 ……………………92 陸、結論 …………………………………………………………100 參考文獻 ………………………………………………………… 102 附錄…………………………………………………………………112

    [1] D. M. DeLongchamp, M. M. Ling, Y. Jung, D. A. Fischer, M. E. Roberts, E. K. Lin, and Z. Bao, J. Am. Chem. Soc. 2006, 128, 16579-16586.

    [2] (a) L. R. Pattison, A. Hexemer, E. J. Kramer, S. Krishnan, P. M. Petroff, and D. A. Fischer, Macromolecules 2006, 39, 2225-2231. (b) H. Sirringhaus, R. J. Wilson, R. H. Friend, M. Inbasekaran, W. Wu, E. P. Woo, M. Grell, and D. D. C. Bradley, Applied Physics Letters, 2000, 77, 406. (c) Swiggers, M. L.; Xia, G.; Slinker, J. D.; Gorodetsky, A. A.; Malliaras, G. G.; Headrick, R. L.; Weslowski, Brian T.; Shashidhar, R. N.; Dulcey, C. S.; Applied Physics Letters, 2001, 79, p1300.

    [3] (a) Max Shtein, Jonathan Mapel, Jay B. Benziger, and Stephen R. Forrest, Appl. Phys. Lett. 2002, 81, 268. (b) X. Linda Chen, Andrew J. Lovinger, Zhenan Bao, and Joyce Sapjeta, Chem. Mater. 2001, 13, 1341-1348. (c) W. Y. Chou, C. W. Kuo, H. L. Cheng, F. C. Tang, S. T. Lin, C. Y. Yeh, J. B. Horng, C. T. Chia, C. C. Liao and D. Y. Shu, J. Appl. Phys. 2006, 99, 114511.

    [4] (a) M. Jandke, P. Strohriegl, J. Gmeiner, W. Brütting, and M. Schwoerer, Adv. Mater. 1999, 11, 1518. (b) T. Miteva, A. Meisel, W. Knoll, H. G. Nothofer, U. Scherf, D. C. Müller,K. Meerholz, A. Yasuda, and D. Neher, Adv. Mater. 2001, 13 , 8. (c) D. Sainova, A. Zen, H. G. Nothofer, U. Asawapirom, U. Scherf, R. Hagen, T. Bieringer, S. Kostromine, and D. Neher, Adv. Funct. Mater. 2002, 49, 12. (d) Y. G. Andrew, C. A. Chen and J. O. Jane, Chem Mater. 2003, 15, 4352.

    [5] 黃素真,科學發展,2002,349,30。
    [6] D. W. Berreman, Phys. Rev. Lett. 1972, 28, 1683.
    [7] J. M. Geary, J. W. Goodby, A. R. Kmetz, and J. S. Patel, J. Appl. Phys, 1987, 62, 4100.

    [8] J. Stöhr, M.G. Samant, J. Elec. Spectrosc. Relat. Phenom, 1999, 98, 189.

    [9] Masaki Hasegawa, Jpn. J. Appl. Phys. 1999, Prat2, 38, L255.
    [10] Kyung Chan Kim, Han Jin Ahn, Jong Bok Kim, Byoung Har Hwang, and Hong Koo Baik, Langmuir 2005, 21, 11079-11084.
    [11] J.-S. Gwag, C.-G. Jhun, J.-C. Kim, and T.-H. Yoon, G.-D. Lee, S.-J. Cho, J. Appl. Phys. 2004, 96, 257.

    [12] Jos van Haaren, Nature 2001, 411, 29.
    [13] J. Hoogboom, T. Rasing, A. E. Rowan, and R. J. M. Nolte, J. Mater. Chem. 2006, 16, 1305-1314.

    [14] (a) U.S. Patent No. 5770826, issued Jun,26,1998. (b) U.S. Patent No. 6020946, issued Feb,1,2000. (c) U.S. Patent No. 6061114, issued May,9,2000. (d) U.S. Patent No. 6195146 B1, issued Feb,27,2001. (e) U.S. Patent No. 6485614 B2, issued Nov,26,2002.

    [15] (a) P. Chaudhari, J. Lacey, J. Doyle, E. Galligan, S.-C. Alan Lien, A. Callegari, G. Hougham, N. D. Lang, P. S. Andry, R. John, K.-H. Yang, M. Lu, C. Cai, J. Speidell, S. Purushothaman, J. Ritsko, M. Samant, J. Stöhr, Y. Nakagawa, Y. Katoh, Y. Saitoh, K. Sakai, H. Satoh, S. Odahara, H. Nakano, J. Nakagaki, and Y. Shiota, NATURE 2001, 411, 56. (b) Chaudhari, P., Lacey, J., Lien, S. A. and Speidell, J. L. Jpn J. Appl. Phys. 1998, 37, L55.

    [16] J. Stöhr, M. G. Samant, J. Luning, A. C. Callegari, P. Chaudhari, J. P. Doyle, J. A. Lacey, S. A. Lien, S. Purushothaman, J. L. Speidell, Science 2001, 292, 2299.
    [17] J. Stöhr, M. G. Samant, A. Cossy-Favre, J. Dı´az, Y. Momoi, S. Odahara, and T. Nagata, Macromolecules 1998, 31, 1942-1946.

    [18] B. H. Clare, K. Efimenko, D. A. Fischer, J. Genzer, and N. L. Abbott, Chem. Mater. 2006, 18, 2357-2363.
    [19] 蕭惠方,國立臺灣師範大學化學所碩士論文,2006。
    [20] J. Hoogboom, M. Behdani, J.A. A. W. Elemans, M. A. C. Devillers, R. Gelder, A. E. Rowan, T. Rasing, and Roeland J. M. Nolte, Angew. Chem. Int. Ed. 2003, 42, 1812 -1815.

    [21] J. Hoogboom, P. M. L. Garcia, M. B. J. Otten, J. A. A. W. Elemans, J. Sly, S. V. Lazarenko, T. Rasing, A. E. Rowan, and R. J. M. Nolte, J. Am. Chem. Soc. 2005, 127, 11047-11052.
    [22] V. K. Gupta, J. J. Skaife, T. Dubrovsky and N. L. Abbott, Science 1998, 279, 2077.
    [23] (a) J. Hoogboom, J. Clerx, M. B. J. Otten, A. E. Rowan, T. Rasing, and R. J. M. Nolte, Chem. Commun. 2003, 2856. (b) J. Hoogboom, K. Velonia, T. Rasing, A. E. Rowan, and R. J. M. Nolte, Chem. Commun. 2006, 434–435.

    [24] (a) J. L. Janning , Appl. Phys. Lett. 1972, 21, 173 . (b) N. A. Clark, S. T. Lagerwall, Appl. Phys. Lett. 1980, 36, 899.

    [25] K. Takatoh,M. Sakamoto, R. Hasegawa, M. Koden, N. Itoh, M. Hasegawa, Alignment technologies and applications of liquid crystal devices, 2005, Taylor & Francis.

    [26] T. Uchida, Mol. Cryst. Liq. Cryst. 1985, 123, 15.
    [27] Y.-J. Lee, Y.-W. Kim, J.-D. Ha, J.-M Oh and M.-H. Yi, Polym. 2006, 47, 1555–1562.

    [28] (a) J. H. Kim, M. Yoneya, H. Yokoyama, Nature 2002, 420, 159. (b) S. Varghese, S. Narayanankutty, C. W. M. Bastiaansen, and D. J. Broer, Adv. Mater. 2004, 16, 1600.

    [29] (a) S. Park, C. Padeste, H. Schift, J. Gobrecht, and T. Scharf, Adv. Mater. 2005, 17, 1398-1401. (b) C.-H. Chiu, H.-L. Kuo, P.-C. Chen, C.-H. Wen, Y.-C. Liu, and P. Chen, Appl. Phys. Lett. 2006, 88, 073509. (c) H.-R. Kim, J.-W. Jung, Y.-J. Lee, and J.-H. Kim, Appl. Phys. Lett. 2006, 88, 113504.

    [30] (a) Saunders FC, Staromlynska J, Smith GW and Daniel MF, Mol. Cryst. Liq. Cryst. 1985, 122, 287. (b) Y. Kawanishi, T. Takimiya, and K.Ichimura, Polym. Mater. Sci. Eng. 1992, 66, 263. (c) Y. Kawanishi, T. Tamaki, M. Sakuragi, T. Seki, Y. Suzuki, and K.Ichimura, Langmuir 1992, 8, 2601.

    [31] (a) T. Ikeda, J. Mater. Chem. 2003, 13, 2037. (b) K. Ichimura, Chem. Rev. 2000, 100, 1847. (c) T. Sasaki, and T. Ikeda, J. Phys. Chem. 1995, 99, 13013, (d) H. Sakamoto, M. Tanaka and K. Kimura, Chem. Lett. 2000, 928. (e) R. Wirnsberger, B. J. Scott, B. F. Chmelka, and G. D. Stucky, Adv. Mater. 2000, 12, 1450. (f) H. Nishikiori, R. Sasai, N. Arai, and K. Takaoki, Chem. Lett. 2000, 1142.

    [32] (a) D. S. Seo, H. K. Kim, and H. J. Jeon, Liq. Cryst. 2001, 28, 313. (b) O. Yaroshchuk, R. Kravchuk, A. Dobrovolskyy, and O. Lavrenlovich, Liq. Cryst. 2004, 31, 859.(b) K. Y. Wu, C. H. Chen, C. M. Yeh, J. Hwang, P. C. Liu, C. Y. Lee, C. W. Chen, H. K. Wei, C. S. Kou, and C. D. Lee, J. Appl. Phys. 2005, 98, 083518.

    [33] (a) Dae-Shik Seo and Jeong-Ho Lee, Jpn. J. Appl. Phys. 1999, 38, L1432-L1434. (b) US Patent 7090901, Issued August,15,2006.

    [34] A. C. Ferrari, and J. Robertson, Physical Review B 2000, 61, 14095.

    [35] (a) C. Angus and C. Hayman, Science 1988, 241, 913. (b) F. Demichelis, A. Tagliaferro, and D. Das Gupta, Surf. Coat. Technol 1991, 47, 218. (c) J. Roberson, Surface and Coating Technology, 1992, 185, 50.

    [36] Li, J.J.; Gu, C.Z.; Peng, H.Y.; Wu, H.H.; Zheng, W.T.; Jin, Z.S.; Applied Surface Science 2005, 251, 236-241.
    [37] Lin, I.-N.; Chuang, F.-Y.; Tseng, C.-T.; Cheng, H.-F.; Sun, C.-Y.; Diamond and Related Materials 1998, 7, 711-716.

    [38] (a) J. Meneve, R. Jacobs, L. Eersels, J. Smeets, E. Dekempeneer, Surf. Coatings Technol. 1993, 62, 577. (b) M. Grischke, K. Bewilogua, K. Trojan, H. Dimigen, Surf. Coatings Technol. 1995, 739, 74-75. (c) Y.Y. Chang, D.Y. Wang, WeiTe Wu, Thin Solid Films 2002, 241, 420– 421.

    [39] US Patent 4153529, issued May,1,1979.
    [40] B.-W. Lee and N. A. Clark, Science 2001, 291, 2576.
    [41] Langmuir, I., J. Am. Chem. Soc. 1917, 39, 1848.
    [42] Blodgett, K. A., J. Am. Chem. Soc. 1935, 57, 1007.
    [43] A. Ulman, Chem. Rev. 1996, 96, 1533.
    [44] J. Christopher Love, Lara A. Estroff, Jennah K. Kriebel, Ralph G. Nuzzo, and George M. Whitesides, Chem. Rev. 2005, 105, 1103.

    [45] F. J. Kahn, G. N. Taylor, and H. Schonhorn, Proceedings of The IEEE 1973, 61, 823.

    [46] (a) D. Shenoy, K. Grueneberg, J. Naciri, and R. Shashidhar, Jpn. J. Appl. Phys. 1998, Part 2 37, L1326. (b) D. Shenoy, L. Beresnev, D. Holt, and R. Shashidhar, Appl. Phys. Lett. 2002, 80, 4. (c) Shenoy, D.; Gru¨ neberg, K.; Naciri, J.; Shashidhar, R. Jpn. J. Appl. Phys. A 1998, 37, L1326. (d) J. Naciri, J. Y. Fang, M. Moore, D. Shenoy, C. S. Dulcey, and R. Shashidhar, Chem. Mater. 2000, 12, 3288. (e) J. Naciri, D. K. Shenoy, K. Grueneberg, and R. Shashidhar, J. Mater. Chem. 2004, 14, 3468–3473.

    [47] U.S. Patent No. 5578351, issued Nov,26,1996.
    [48] O. Kazufumi , O. Tadashi and N. Takaiki , Jpn. J. Appl. Phys. 2002, 41,6471–6477.
    [49] EDITORS’CHOICE, SCIENCE 2005, 359, 852.
    [50] Vinay K. Gupta and Nicholas L. Abbott, SCIENCE, 1997, 276,1533.
    [51] Vinay K. Gupta and Nicholas L. Abbott, Physical Review E 1996, 54, R4540.
    [52] H. T. A. Wilderbeek, F. J. A. van der Meer, K. Feldmann, D. J. Broer and C. W. M. Bastiaansen, Adv. Mater. 2002, 14, 655.
    [53] R. van Hameren, P. Schon, A. M. van Buul, J. Hoogboom, S. V. Lazarenko, J. W. Gerritsen, H. Engelkamp, P. C. M. Christianen, H. A. Heus, J. C. Maan, T. Rasing, S. Speller, A. E. Rowan, R. J. M. Nolte, Science 2006, 314, 1433.
    [54] A. Grill, Cold Plasma in Materials Fabrication: From Fundamentals to Application, IEEE Press, 1993.
    [55] H. V. Boenig, Plasma Science and Technology, Cornell University Press, 1982.

    [56] (a) C. C. Wang, G. H. Hsiue, Journal of Applied Polymer Science, 1993, 50, 1141-1149. (b) H. Xu, Z. Hu, S. Wu, Y. Chen, Materials Chemistry and Physics 2003, 80, 278–282.

    [57] Y. L Hsieh, M. Wu, Journal of Applied Polymer Science, 1991, 43, 2067-2082.
    [58] L. Dai, H. A. W. Stjohn, J. Bi, P. Zientek, R. C. Chatelier, H. J. Griesser, Surface and Interface Analysis, 2000, 29, 46-55.
    [59] 汪建民 等,材料分析,中國材料科學學會,1998。
    [60] E. Hahn. Adv. Electronic and Electron Physics., 75, 233, ( 1989 )
    [61] http://www.nsrrc.org.tw/
    [62] A. Schöll, Y. Zou, T. Schmidt, R. Fink, E. Umbach, J. Electron Spectrosc. Relat. Phenom. 2003, 129, 1–8.
    [63] J. Stöhr, NEXAFS Spectroscopy, Springer, Heidelberg, 1992.
    [64] B. Watts, L. Thomsen, P.C. Dastoor, Journal of Electron Spectroscopy and Related Phenomena, 2006, 151, 105–120.

    [65] J. Chastain and R. C. Jr. King, Handbook of X-ray Photoelectron Spectroscopy, Physical Electronics Inc, 1995.
    [66] John C. Vickerman, Surface analysis – the principal techniques, John Wiley and Sons, 1997.

    [67] Soon Jin Oh, Sung Ju Cho, Chang Ok Kim, and Joon Won Park, Langmuir 2002, 18, 1764.
    [68] Paul T. Charles, Gary J. Vora, Joanne D. Andreadis, Amanda J. Fortney, Carolyn E. Meador, Charles S. Dulcey, and David A. Stenger, Langmuir 2003, 19, 1586.

    [69] S.-Y. Liu, L. Fang, Y.-B. He, W.-H. Chan, K.-T. Yeung, Y.-K. Cheng, and R.-H. Yang, Org. Lett. 2005, 7, 5825.

    [70] A. Cossy-Favre, J. Dıaz, Y. Liu, H. R. Brown, M. G. Samant, J. Stöhr, A. J. Hanna, S. Anders, and T. P. Russell, Macromolecules, 1998, 31, 4957-4962.

    [71] J. L. Jordan-sweet, C. A. Kovac, M. J. Goldberg, J. F. Morar, J. Chem. Phys. 1988, 89, 2482.

    [72] K. Weiss, C. Wo, E. Bohm, B. Fiebranz, G. Forstmann, B. Peng, V. Scheumann, and D. Johannsmann, Macromolecules, 1998, 31, 1930-1936.

    [73] A. A. Galuska, J. Vac. Sci. Technol. B 1990, 8 ,470.
    [74] A.M. EktessabiU, and S. Hakamata, Thin Solid Films 2000, 377-378, 621-625.
    [75] B. D. Silverman, J. W. Bartha, J. G. Clabes, P.S. Ho, A. R. Rossi, J. Polym. Sci. A, Polym. Chem. 1986, 24, 3325-3333.

    [76] D. A. Outka; J. Stöhr ; J. Madix R.; H. H. Rotermund ; B. Hermsmeier ; J. Solomon ; Surface science 1987, 185, 53-74,

    [77] M. Zharnikov, Y. Ouchi, M. Hasegawa, and A. Schöll, J. Phys. Chem. B 2004, 108, 859-863.

    [78] T. Sakai, K. Ishikawa, and H. Takezoe, N. Matsuie, Y. Yamamoto, H. Ishii, and Y. Ouchi, H. Oji, K. Seki, J. Phys. Chem. B 2001, 105, 9191-9195.

    [79] T. Tanka, K. K. Bando, N. Matsubayashi, M. Imamura, H. Shimada, Physica scripta, 2005, T115, 412-414.

    [80] J.-H. Kang, C.-K. Young, K. Cho, E.-P. Chan, Journal of Applied Polymer Science 2006, 99, 3433–3440.

    [81] Pavlychev, A. A., Hallmeier, K. H., Hennig, C., Hennig, L. and Szargan, R., Chem. Phys. 1995, 201, 547.

    [82] T. Tanaka, K. K. Bando, N. Matsubayashi, M. Imzmura, H. Shimada, K. Takahashi, and G. Katagiri, ANALYTICAL SCIENCES 2001, 17, i1077.

    [83] Z.Q.Wei, C. Wang, C.F. Zhu, C.Q. Zhou, B. Xu, C.L. Bai, Surface Science 2000, 459, 401–412.

    [84] D.L. Allara, A.N. Parikh, F. Rondelez, Langmuir 1995, 11, 2357.

    [85] X B Yan, T Xu, S R Yang1, H W Liu and Q J Xue, J. Phys. D: Appl. Phys, 2004, 37, 2416.

    [86] P. S. Bagus, K. Weiss, A. Schertel, Ch. Wöll, W. Braun, C. Hellwig and C. Jung, Chem. Phys. Lett. 1996, 248, 129.

    [87] O. Dannenberger, K. Weiss, C. Wöll, and M. Buck, Phys. Chem. Chem. Phys., 2000, 2, 1509-1514.

    [88] P. W. Atkins, Physical Chemistry 7th Ed., W.H.Freeman, 2002

    QR CODE