研究生: |
陳筱蓁 Chen, Xiao-Zhen |
---|---|
論文名稱: |
水分與營養限制對附生植物臺灣巢蕨(Asplenium nidus)生長影響之探討 Effects of Water and Nutrient Limitation on the Growth of Taiwan Nest Fern (Asplenium nidus) |
指導教授: |
林登秋
Lin, Teng-Chiu |
口試委員: |
江智民
Chiang, Jyh-Min 王巧萍 Wang, Chiao-Ping 林登秋 Lin, Teng-Chiu |
口試日期: | 2023/01/31 |
學位類別: |
碩士 Master |
系所名稱: |
生命科學系 Department of Life Science |
論文出版年: | 2023 |
畢業學年度: | 111 |
語文別: | 中文 |
論文頁數: | 67 |
中文關鍵詞: | 附生植物 、臺灣巢蕨 、水分與營養限制 、溫室 |
英文關鍵詞: | Epiphytes, Asplenium nidus, Water and Nutrient limitation, Greenhouse |
研究方法: | 實驗設計法 |
DOI URL: | http://doi.org/10.6345/NTNU202300264 |
論文種類: | 學術論文 |
相關次數: | 點閱:120 下載:25 |
分享至: |
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
水及營養是影響生態系初級生產力的重要因子,然而氣候變遷直接或間接改變了生態系中諸多環境因子包括水及營養元素的可利用性,使植物生長甚至存活受到重大影響。附生植物所需資源大多直接來自大氣中,對於氣候的變化可能更為敏感,有研究指出其營養限制與該生態系的地生植物相似,且生長週期較地生植物尤其樹木短,對於施肥實驗有更快的反應,故可用施肥實驗探究其營養限制,進而推論生態系營養限制。本研究欲探討水及營養對附生植物生長的限制,透過採集福山植物園及烏來福山村的臺灣巢蕨(Asplenium nidus Linn.),於溫室內進行為期一年限制水分(高、低水組)及施肥實驗(加氮、加磷、加磷氮、控制組)。發現臺灣巢蕨的葉面積在高水組顯著高於低水組,施氮磷肥組則在不同水處理皆為最高,施氮組及施磷組分別在高低水處理中呈現相反的結果;葉內元素分析結果,大多在高水組有較高含量,少數元素如碳與鉀在低水組反而較高。結果顯示臺灣巢蕨的生長受到的水分限制影響比營養限制更大,並且可能受到氮磷的共同限制。
Water and nutrition are important factors influencing the primary productivity of ecosystems. Climate change has directly or indirectly changed many environmental factors, including water and nutrient availability, which has greatly affected the growth and even the survival of plants. Most epiphytes absorb nutrition and water directly from the atmosphere so they are likely more sensitive to climate change. Studies suggested that the nutrient limitation of epiphytes is similar to non-epiphytes of the ecosystem. Moreover, epiphytes have much shorter life spans than non-epiphytes, especially trees. Thus, fertilization experiments can be used to examine epiphyte nutrient limitation and infer ecosystem nutrient limitation. This study aims to examine how the response of epiphyte growth to water and nutrition manipulation. We collected Taiwan nest fern (Asplenium nidus Linn.) from Fushan Botanical Garden and Wulai Fushan Village, then manipulated their water availability (high and low) and nutrient availability (adding nitrogen , phosphorus, phosphorus plus nitrogen, control) in the greenhouse. It was found that the leaf area of A. nidus in the high water group was significantly greater than low water group. Among the different fertilization groups the nitrogen plus phosphorus fertilization group was the highest across different water treatments. Nitrogen addition and phosphorus addition showed opposite effects on A. nidus growth between high and low water treatments. Leaf elements content was overall higher in the high water group, but a few elements such as carbon and potassium were higher in the low water group. The results showed that the growth of A. nidus was more affected by water limitation than nutrient limitation and may be co-limited by nitrogen and phosphorus.
王玉婷、田玉娟、李孟諭、陳萬賓、王相華,2014。年初氣溫變化對於福山植物園栽植樹種花期之影響。臺灣生物多樣性研究,16(1):63-76。
王相華、蘇聲欣、張勵婉,2020。兩種附生巢蕨在北台灣亞熱帶潮濕森林的空間分布特性。臺灣林業科學,35(3):205-216。
甘浩廷,2019。亞熱帶森林生態系附生植物營養限制之研究。國立臺灣師範大學生命科學演化組研究所碩士論文。
李沛軒, 林謙佑, 邱文良, 黃曜謀, 林則桐,2013。福山植物園蕨類物候。林業研究專訊,20(3):45-48。
李先祐,2019。福山地區維管束附生植物之物種組成及功能性狀在垂直方向的變化趨勢。國立臺灣大學森林環境暨資源學研究所碩士論文。
周佳、陳維婷、羅敏輝、李明安、許晃雄、洪志誠、鄒治華、盧孟明、洪致文、陳正達、鄭兆尊,2017。臺灣氣候變遷科學報告2017第一冊物理現象與機制。國家災害防救科技中心。
郭城孟,2001。蕨類圖鑑1 基礎常見篇。臺北遠流出版有限公司。
徐嘉君,2007。台灣的維管束附生植物綜論。國立臺灣大學生物資源暨農學院實驗林研究報告 21(2):161-180。
陳俊仁、謝桑煙、黃山內,2001。山蘇花品種、習性及繁殖方法。行政院農業委員會全球資訊網 農政與農情 第105期。
陸象豫、黃良鑫、黃惠雪,2009。林業試驗所 福山研究中心氣象資料彙編2000年 1月- 2009 年 6月。行政院農委會林業試驗所。
彭德昌,2002。山蘇蕨菜之肥培管理。花蓮區農業專訊,(40):5-6。劉小如、丁宗蘇、方偉宏、林文宏、蔡牧起、顏重威,2010。台灣鳥類誌。行政院農業委員會林務局。
Ackerman, J. D., 1986. Coping with the epiphytic existence: pollination strategies. Selbyana, 52-60.
Ågren, G. I., Wetterstedt, J. M., Billberger, M. F., 2012. Nutrient limitation on terrestrial plant growth–modeling the interaction between nitrogen and phosphorus. New Phytologist, 194(4), 953-960.
Anderegg, W. R., Berry, J. A., Smith, D. D., Sperry, J. S., Anderegg, L. D., & Field, C. B., 2012. The roles of hydraulic and carbon stress in a widespread climate-induced forest die-off. Proceedings of the National Academy of Sciences, 109(1), 233-237.
Aragón, G., Abuja, L., Belinchón, R., Martínez, I., 2015. Edge type determines the intensity of forest edge effect on epiphytic communities. European Journal of Forest Research, 134(3), 443-451.
Asensio, D., Zuccarini, P., Ogaya, R., Marañón-Jiménez, S., Sardans, J., Peñuelas, J., 2021. Simulated climate change and seasonal drought increase carbon and phosphorus demand in Mediterranean forest soils. Soil Biology and Biochemistry, 163, 108424.
Barker, A. V., Pilbeam, D. J. (Eds.)., 2015. Handbook of plant nutrition. CRC press.
Barthlott, W., Schmit-Neuerburg, V., Nieder, J., Engwald, S., 2001. Diversity and abundance of vascular epiphytes: a comparison of secondary vegetation and primary montane rain forest in the Venezuelan Andes. Plant Ecology, 152(2), 145-156.
Bartkowiak, S. M., Samuelson, L. J., McGuire, M. A., Teskey, R. O., 2015. Fertilization increases sensitivity of canopy stomatal conductance and transpiration to throughfall reduction in an 8-year-old loblolly pine plantation. Forest Ecology and Management, 354, 87-96.
Bchir, A., Escalona, J. M., Gallé, A., Hernández-Montes, E., Tortosa, I., Braham, M., Medrano, H., 2016. Carbon isotope discrimination (δ13C) as an indicator of vine water status and water use efficiency (WUE): Looking for the most representative sample and sampling time. Agricultural Water Management, 167, 11-20.
Benítez, J. M. G., Cape, J. N., Heal, M. R., van Dijk, N., Díez, A. V., 2009. Atmospheric nitrogen deposition in south-east Scotland: Quantification of the organic nitrogen fraction in wet, dry and bulk deposition. Atmospheric Environment, 43(26), 4087-4094.
Benner, J. W., Vitousek, P. M., 2007. Development of a diverse epiphyte community in response to phosphorus fertilization. Ecology Letters, 10(7): 628-636.
Benzing, D. H., 1981. The population dynamics of Tillandsia circinnata (Bromeliaceae): cypress crown colonies in southern Florida. Selbyana, 5(3/4), 256-263.
Benzing, D. H., 1990. Vascular epiphytes. General biology and related biota. Cambridge: Cambridge University Press.
Bonan, G. B., 1990. Carbon and nitrogen cycling in North American boreal Biogeographic patterns. Canadian Journal of Forest Research
Bruijnzeel, L. A., Eugster, W., Burkard, R., 2005. Fog as a hydrological input. Encyclopedia of Hydrological Sciences.
Burt, T., Boardman, J., Foster, I., Howden, N., 2016. More rain, less soil: long‐term changes in rainfall intensity with climate change. Earth Surface Processes and Landforms, 41(4), 563-566.
Chapin III, F. S., Vitousek, P. M., Van Cleve, K., 1986. The nature of nutrient limitation in plant communities. The American Naturalist, 127(1), 48-58.
Chase, M. W., 1986. A monograph of Leochilus (Orchidaceae). Systematic Botany Monographs, 1-97.
Clark, K. L., Nadkarni, N. M., Schaefer, D., Gholz, H. L., 1998. Atmospheric deposition and net retention of ions by the canopy in a tropical montane forest, Monteverde, Costa Rica. Journal of Tropical Ecology, 14(1), 27-45.
Cheruiyot, E. K., Mumera, L. M., Ng'etich, W. K., Hassanali, A., Wachira, F. N., 2009. High fertilizer rates increase susceptibility of tea to water stress. Journal of Plant Nutrition, 33(1), 115-129.
Cook, B. I., Mankin, J. S., Anchukaitis, K. J., 2018. Climate change and drought: From past to future. Current Climate Change Reports, 4(2):164-179.
Cramer, M. D., Hawkins, H. J., Verboom, G. A., 2009. The importance of nutritional regulation of plant water flux. Oecologia, 161(1), 15-24.
da Silva, E. C., Nogueira, R. J. M. C., da Silva, M. A., de Albuquerque, M. B., 2011. Drought stress and plant nutrition. Plant Stress, 5(1), 32-41.
Dai, A., Zhao, T., Chen, J., 2018. Climate change and drought: a precipitation and evaporation perspective. Current Climate Change Reports, 4(3), 301-312.
DaMatta, F. M., Loos, R. A., Silva, E. A., Loureiro, M. E., Ducatti, C., 2002. Effects of soil water deficit and nitrogen nutrition on water relations and photosynthesis of pot-grown Coffea canephora Pierre. Trees, 16(8), 555-558.
de Roland, L. A. R., Rabearivony, J., Razafimanjato, G., Robenarimangason, H., Thorstrom, R., 2005. Breeding biology and diet of banded kestrels Falco zoniventris on Masoala Peninsula, Madagascar. Ostrich-Journal of African Ornithology, 76(1-2), 32-36.
Egilla, J. N., Davies, F. T., Drew, M. C., 2001. Effect of potassium on drought resistance of Hibiscus rosa-sinensis cv. Leprechaun: Plant growth, leaf macro-and micronutrient content and root longevity. Plant and Soil, 229(2), 213-224.
Eller, C. B., Lima, A. L., Oliveira, R. S. 2016. Cloud forest trees with higher foliar water uptake capacity and anisohydric behavior are more vulnerable to drought and climate change. New Phytologist, 211(2): 489-501.
Elser, J. J., Bracken, M. E., Cleland, E. E., Gruner, D. S., Harpole, W. S., Hillebrand, H., Smith, J. E., 2007. Global analysis of nitrogen and phosphorus limitation of primary producers in freshwater, marine and terrestrial ecosystems. Ecology Letters, 10(12), 1135-1142.
Fisher, F. M., Zak, J. C., Cunningham, G. L., Whitford, W. G., 1988. Water and nitrogen effects on growth and allocation patterns of creosotebush in the northern Chihuahuan Desert. Rangeland Ecology and Management Journal of Range Management Archives, 41(5), 387-391.
Fleischbein, K., Wilcke, W., Goller, R., Boy, J., Valarezo, C., Zech, W. Knoblich, K., 2005. Rainfall interception in a lower montane forest in Ecuador: effects of canopy properties. Hydrological Processes, 19, 1355–1371.
Foyer, C. H., Valadier, M. H., Migge, A., Becker, T. W., 1998. Drought-induced effects on nitrate reductase activity and mRNA and on the coordination of nitrogen and carbon metabolism in maize leaves. Plant Physiology, 117(1), 283-292.
Freiberg, M., Freiberg, E., 2000. Epiphyte diversity and biomass in the canopy of lowland and montane forests in Ecuador. Journal of Tropical Ecology, 16, 673–688.
Gadsdon, S. R., Dagley, J. R., Wolseley, P. A., Power, S. A., 2010. Relationships between lichen community composition and concentrations of NO2 and NH3. Environmental Pollution, 158(8), 2553-2560.
Gentry, A. H., Dodson, C.H., 1987a. Contribution of nontrees to species richness of a tropical rain forest. Biotropica, 149-156.
Gentry, A. H., Dodson, C. H., 1987b. Diversity and biogeography of neotropical vascular epiphytes. Annals of the Missouri Botanical Garden, 74(2), 205-233.
Gotsch, S. G., Nadkarni, N., Amici, A., 2016. The functional roles of epiphytes and arboreal soils in tropical montane cloud forests. Journal of Tropical Ecology, 32(5), 455-468.
Grime, J. P., Hunt, R., 1975. Relative growth-rate: its range and adaptive significance in a local flora. Journal of Ecology, 393-422.
Güsewell, S., 2004. N: P ratios in terrestrial plants: variation and functional significance. New phytologist, 164(2), 243-266.
Handa, S., Bressan, R. A., Handa, A. K., Carpita, N. C., Hasegawa, P. M. 1983. Solutes contributing to osmotic adjustment in cultured plant cells adapted to water stress. Plant Physiology, 73(3), 834-843.
Harpole, W. S., Ngai, J. T., Cleland, E. E., Seabloom, E. W., Borer, E. T., Bracken, M. E., Smith, J. E., 2011. Nutrient co‐limitation of primary producer communities. Ecology Letters, 14(9), 852-862.
Hartmann, H., Ziegler, W., Trumbore, S., 2013. Lethal drought leads to reduction in nonstructural carbohydrates in Norway spruce tree roots but not in the canopy. Functional Ecology, 27(2), 413-427.
Hartmann, H., 2015. Carbon starvation during drought-induced tree mortality–are we chasing a myth?. Journal of Plant Hydraulics, 2, e005.
He, M., Dijkstra, F. A., 2014. Drought effect on plant nitrogen and phosphorus: a meta‐analysis. New Phytologist, 204(4), 924-931.
Herbette, S., Charrier, O., Cochard, H., Barigah, T. S., 2021. Delayed effect of drought on xylem vulnerability to embolism in Fagus sylvatica. Canadian Journal of Forest Research, 51(4), 622-626.
Hietz, P., Wanek, W., Popp, M., 1999. Stable isotopic composition of carbon and nitrogen and nitrogen content in vascular epiphytes along an altitudinal transect. Plant, Cell and Environment, 22(11), 1435-1443.
Hietz, P., Wanek, W., Wania, R., Nadkarni, N. M., 2002. Nitrogen-15 natural abundance in a montane cloud forest canopy as an indicator of nitrogen cycling and epiphyte nutrition. Oecologia, 131(3), 350-355.
Hietz, P., Buchberger, G., Winkler, M., 2006. Effect of forest disturbance on abundance and distribution of epiphytic bromeliads and orchids. Ecotropica, 12(2):103-112.
Hofstede, R. G., Wolf, J. H., Benzing, D. H., 1993. Epiphytic biomass and nutrient status of a Colombian upper montane rain forest. Selbyana, 37-45.
Högberg, P. & Read, D. J., 2006. Towards a more plant physiological perspective on soil ecology. Trends in Ecology & Evolution, 21(10), 548-554.
Hu, T., Liu, W. Y., Wen, H. D., Song, L., Zhang, T. T., Chen, Q., Liu, S., 2022. Vascular epiphyte populations with higher leaf nutrient concentrations showed weaker resilience to an extreme drought in a montane cloud forest. Plant Biology, 25(1), 215-225.
Huang, G. Z., Lin, T. C., 2016. Response of two epiphyte species to nitrogen and phosphorus fertilization at a humid subtropical rainforest in northeastern Taiwan. Taiwan Journal of Forest Science, 31(4), 293-304.
Hsu, C. C., Horng, F.W., Kuo, C.M., 2002. Epiphyte biomass and nutrient capital of a moist subtropical forest in north-eastern Taiwan. Journal of Tropical Ecology, 18(5), 659-70.
Jiang, M., Zhang, J., 2002. Involvement of plasma-membrane NADPH oxidase in abscisic acid-and water stress-induced antioxidant defense in leaves of maize seedlings. Planta, 215(6), 1022-1030.
Jiang, J., Wang, Y. P., Yang, Y., Yu, M., Wang, C., Yan, J., 2019. Interactive effects of nitrogen and phosphorus additions on plant growth vary with ecosystem type. Plant and Soil, 440(1), 523-537.
Kenneth, L. C., Nalini, M. N., Henry, L. G., 1998. Growth, net production, litter decomposition, and net nitrogen accumulation by epiphytic bryophytes in a tropical montane forest. Biotropica, 30(1), 12-23.
Kimmins, J. P., 1987. Forest Ecology. Macmillian Publishing, New York.
Kinjo, T., Pratt, P. F., 1971. Nitrate adsorption: II. In competition with chloride, sulfate, and phosphate. Soil Science Society of America Journal, 35(5), 725-728.
Koerselman, W., Meuleman, A. F., 1996. The vegetation N: P ratio: a new tool to detect the nature of nutrient limitation. Journal of applied Ecology, 1441-1450.
Konapala, G., Mishra, A. K., Wada, Y., Mann, M. E., 2020. Climate change will affect global water availability through compounding changes in seasonal precipitation and evaporation. Nature Communications, 11(1), 1-10.
Kress, W. J., 1989. The systematic distribution of vascular epiphytes. In Vascular plants as epiphytes (pp. 234-261). Springer, Berlin, Heidelberg.
Kreft, H., Köster, N., Küper, W., Nieder, J., Barthlott, W., 2004. Diversity and biogeography of vascular epiphytes in Western Amazonia, Yasuní, Ecuador. Journal of Biogeography, 31(9), 1463-1476.
Kreuzwieser, J., Gessler, A., 2010. Global climate change and tree nutrition: influence of water availability. Tree Physiology, 30(9), 1221-1234.
Küper, W., Kreft, H., Nieder, J., Köster, N., Barthlott, W., 2004. Large‐scale diversity patterns of vascular epiphytes in Neotropical montane rain forests. Journal of Biogeography, 31(9), 1477-1487.
Laube, S., Zotz, G., 2003. Which abiotic factors limit vegetative growth in a vascular epiphyte?. Functional Ecology, 17(5), 598-604.
Li, J., Li, Z., Wang, F., Zou, B., Chen, Y., Zhao, J., Mo,Q., Li,Y., Li,X., Xia, H., 2015. Effects of nitrogen and phosphorus addition on soil microbial community in a secondary tropical forest of China. Biology and Fertility of Soils, 51(2), 207-215.
Liang, Y. L., Lin, T. C., Hwong, J. L., Lin, N. H., Wang, C. P., 2009. Fog and Precipitation Chemistry at a Mid‐land Forest in Central Taiwan. Journal of Environmental Quality, 38(2), 627-636.
Lipiec, J., Doussan, C., Nosalewicz, A., Kondracka, K., 2013. Effect of drought and heat stresses on plant growth and yield: a review. International Agrophysics, 27(4), 463-477.
Lu, E. Y., Liu, Y. Y., Yen, C. H., 2007. Dynamics of foliar nutrients in major species of a broadleaf forest in the Fushan experimental forest, northeastern Taiwan. Taiwan Journal of Forest Science, 22(3), 307-319.
Lu, S., Tang, K., Ku, H., Huang, H., 2000. Climatic conditions of forested lands of Taiwan Forestry Research Institute. Taiwan Journal of Forest Science, 15(3), 429-440.
Maggard, A. O., Will, R. E., Wilson, D. S., Meek, C. R., Vogel, J. G., 2016. Fertilization reduced stomatal conductance but not photosynthesis of Pinus taeda which compensated for lower water availability in regards to growth. Forest Ecology and Management, 381, 37-47.
Martin, C. E., Lin, T. C., Hsu, C. C., Lin, S. H., Lin, K. C., Hsia, Y. J., Chiou, W. L., 2004. Ecophysiology and plant size in a tropical epiphytic fern, Asplenium nidus, in Taiwan. International Journal of Plant Sciences, 165(1), 65-72.
Mengel, K., Kirkby, E. A. 2012. Principles of plant nutrition. Springer Science & Business Media.
Miller, H. G., 1981. Forest fertilization: some guiding concepts. Forestry, 54(2), 157-167.
Mirbel, C.F., 1815. E ´ lemens de physiologie ve´ge´tale et de botanique. Seconde Partie. Magimel, Paris
Mirmanto, E., Proctor, J., Green, J., Nagy, L., Suriantata., 1999. Effects of nitrogen and phosphorus fertilization in a lowland evergreen rainforest. Philosophical Transactions of the Royal Society of London. Series B: Biological Sciences, 354(1391), 1825-1829.
Miyashita, K., Tanakamaru, S., Maitani, T., Kimura, K., 2005. Recovery responses of photosynthesis, transpiration, and stomatal conductance in kidney bean following drought stress. Environmental and Experimental botany, 53(2), 205-214.
Nadkarni, N. M., 1984. Epiphyte biomass and nutrient capital of a neotropical elfin forest. Biotropica, 249-256.
Nadkarni, N. M., Matelson, T. J., 1989. Bird use of epiphyte resources in neotropical trees. The Condor, 91(4), 891-907.
Nadkarni, N. M., Matelson, T. J., 1992. Biomass and nutrient dynamics of epiphytic litterfall in a neotropical montane forest, Costa Rica. Biotropica, 24-30.
Nieder, J., Juliana P., Georges M., 2001. Epiphytes and and their contribution to canopy diversity. Plant Ecology. 153(1), 51-63.
O'Leary, M. H., 1981. Carbon isotope fractionation in plants. Phytochemistry, 20(4), 553-567.
O'leary, M. H., Madhavan, S., Paneth, P., 1992. Physical and chemical basis of carbon isotope fractionation in plants. Plant, Cell & Environment, 15(9), 1099-1104.
Penuelas, J., Poulter, B., Sardans, J., Ciais, P., Van Der Velde, M., Bopp, L., Janssens, I. A., 2013. Human-induced nitrogen–phosphorus imbalances alter natural and managed ecosystems across the globe. Nature communications, 4(1), 1-10.
Poirier, Y., Bucher, M., 2002. Phosphate transport and homeostasis in Arabidopsis. The Arabidopsis book/American Society of Plant Biologists, 1.
Premachandra, G.S., Saneoka, H., Ogata, S., 1991. Cell membrane stability and leaf water relations as affected by potassium nutrition of water‐stressed maize. Journal of Experimental Botany 42, 739–745.
R Core Team, 2022. R: A language and environment for statistical computing. R Foundation for Statistical Computing. Vienna, Austria.
Rivero, R. M., Kojima, M., Gepstein, A., Sakakibara, H., Mittler, R., Gepstein, S., Blumwald, E., 2007. Delayed leaf senescence induces extreme drought tolerance in a flowering plant. Proceedings of the National Academy of Sciences, 104(49), 19631-19636.
Roderick, M. L., Berry, S. L., Noble, I. R., 2000. A framework for understanding the relationship between environment and vegetation based on the surface area to volume ratio of leaves. Functional Ecology, 14(4), 423-437.
Romero, G. Q., Nomura, F., Gonçalves, A. Z., Dias, N. Y., Mercier, H., de C. Conforto, E., de C. Rossa-Feres, D., 2010. Nitrogen fluxes from treefrogs to tank epiphytic bromeliads: an isotopic and physiological approach. Oecologia, 162(4), 941-949.
Rouached, H., Arpat, A. B., Poirier, Y., 2010. Regulation of phosphate starvation responses in plants: signaling players and cross-talks. Molecular Plant, 3(2), 288-299.
Rowland, L., Da Costa, A. C., Galbraith, D. R., Oliveira, R. S., Binks, O. J., Oliveira, A. A., Pullen, A. M., Doughty, C. E., Metcalfe, D. B., Vasconcelos, S. S., Ferreira, L.V., Malhi, Y., Grace, J., Mencuccini, M., Meir, P., 2015. Death from drought in tropical forests is triggered by hydraulics not carbon starvation. Nature 528, 119–122.
Rudgers, J. A., Hallmark, A., Baker, S. R., Baur, L., Hall, K. M., Litvak, M. E., Whitney, K. D., 2019. Sensitivity of dryland plant allometry to climate. Functional Ecology, 33(12), 2290-2303.
Sadras, V. O., Milroy, S. P., 1996. Soil-water thresholds for the responses of leaf expansion and gas exchange: A review. Field Crops Research, 47(2-3), 253-266.
Saito, M. A., Goepfert, T. J., Ritt, J. T., 2008. Some thoughts on the concept of colimitation: three definitions and the importance of bioavailability. Limnology and Oceanography, 53(1), 276-290.
Samuelson, L. J., Pell, C. J., Stokes, T. A., Bartkowiak, S. M., Akers, M. K., Kane, M., Teskey, R. O., 2014. Two-year throughfall and fertilization effects on leaf physiology and growth of loblolly pine in the Georgia Piedmont. Forest ecology and Management, 330, 29-37.
Saneoka, H., Moghaieb, R. E., Premachandra, G. S., Fujita, K., 2004. Nitrogen nutrition and water stress effects on cell membrane stability and leaf water relations in Agrostis palustris Huds. Environmental and Experimental Botany, 52(2), 131-138.
Schimper, A. F. W., 1888. Die epiphytische vegetation Amerikas (No. 2). G. Fischer.
Schulze, E. D., Kelliher, F. M., Körner, C., Lloyd, J., Leuning, R., 1994. Relationships among maximum stomatal conductance, ecosystem surface conductance, carbon assimilation rate, and plant nitrogen nutrition: a global ecology scaling exercise. Annual Review of Ecology and Systematics, 25(1), 629-662.
Seibt, U., Rajabi, A., Griffiths, H., Berry, J. A., 2008. Carbon isotopes and water use efficiency: sense and sensitivity. Oecologia, 155, 441-454.
Sheffield, J., Wood, E. F.,2008. Global trends and variability in soil moisture and drought characteristics, 1950–2000, from observation-driven simulations of the terrestrial hydrologic cycle. Journal of Climate, 21(3), 432-458.
Silvera, K., Neubig, K. M., Whitten, W. M., Williams, N. H., Winter, K., Cushman, J. C., 2010. Evolution along the crassulacean acid metabolism continuum. Functional Plant Biology, 37(11), 995-1010.
Snyman, H. A., 2002. Short-term response of rangeland botanical composition and productivity to fertilization (N and P) in a semi-arid climate of South Africa. Journal of Arid Environments, 50(1), 167-183.
Stewart, G. R., Schmidt, S., Handley, L. L., Turnbull, M. H., Erskine, P. D., Joly, C. A., 1995. 15N natural abundance of vascular rainforest epiphytes: implications for nitrogen source and acquisition. Plant, Cell and Environment, 18, 85-90.
Strigel, G., Ruhiyat, D., Prayitno, D., Sarmina, S., 1994. Nutrient input by rainfall into secondary forests in East Kalimantan, Indonesia. Journal of Tropical Ecology, 10(2), 285-288.
Solomon, S., Qin, D., Manning, M., Chen, Z., Marquis, M., Averyt, K.B., Tignor, M., Miller, H. L., 2007. Climate Change 2007: The Physical Science Basis. Contribution of Working Group I to the Fourth Assessment Report of the Intergovernmental Panel on Climate Change. Cambridge University Press, Cambridge.
Stuntz, S., Ziegler, C., Simon, U., Zotz, G., 2002. Diversity and structure of the arthropod fauna within three canopy epiphyte species in central Panama. Journal of Tropical Ecology, 18(2), 161-176.
Sutton, M. A., Howard, C. M., Erisman, J. W., Billen, G., Bleeker, A., Grennfelt, P., Grizzetti, B., 2011. The European nitrogen assessment: sources, effects and policy perspectives. Cambridge University Press.
Taiz, L., Zeiger, E., Møller, I. M., Murphy, A., 2015. Plant physiology and development (No. Ed. 6). Sinauer Associates Incorporated.
Takahashi, C. A., Coutinho Neto, A. A., Mercier, H., 2022. An overview of water and nutrient uptake by epiphytic Bromeliads: new insights into the absorptive capability of leaf trichomes and roots. Progress in Botany, 83, 345-362.
Taylor, A., Saldaña, A., Zotz, G., Kirby, C., Díaz, I., Burns, K., 2016. Composition patterns and network structure of epiphyte–host interactions in Chilean and New Zealand temperate forests. New Zealand Journal of Botany, 54(2), 204-222.
Unsworth, M. H., Wilshaw, J. C., 1989. Wet, occult and dry deposition of pollutants on forests. Agricultural and Forest Meteorology, 47(2-4), 221-238.
Vallicrosa, H., Sardans, J., Maspons, J., Peñuelas, J., 2022. Global distribution and drivers of forest biome foliar nitrogen to phosphorus ratios (N: P). Global Ecology and Biogeography, 31(5), 861-871.
Vanderklein, D., Martinez-Vilalta, J., Lee, S., Mencuccini, M., 2007. Plant size, not age, regulates growth and gas exchange in grafted Scots pine trees. Tree Physiology, 27(1), 71-79.
Vitousek, P. M., Howarth, R. W., 1991. Nitrogen limitation on land and in the sea: How can it occur? Biogeochemistry, 13, 87-115.
Vitousek, P. M., Farrington, H., 1997. Nutrient limitation and soil development: experimental test of a biogeochemical theory. Biogeochemistry, 37(1), 63-75.
Wang, S., Zhou, K., Mori, T., Mo, J., Zhang, W., 2019. Effects of phosphorus and nitrogen fertilization on soil arylsulfatase activity and sulfur availability of two tropical plantations in southern China. Forest Ecology and Management, 453, 117613.
Wassen, M. J., Venterink, H. O., Lapshina, E. D., Tanneberger, F., 2005. Endangered plants persist under phosphorus limitation. Nature, 437(7058), 547-550.
Wilson, E. O., 1988. The current state of biological diversity. Biodiversity, 521(1), 3-18.
Wolf, J. H., 1993. Diversity patterns and biomass of epiphytic bryophytes and lichens along an altitudinal gradient in the northern Andes. Annals of the Missouri Botanical Garden, 928-960.
Wolf, J. H., Alejandro, F. S., 2003. Patterns in species richness and distribution of vascular epiphytes in Chiapas, Mexico. Journal of Biogeography, 30(11), 1689-1707.
Woods, M. J., Frankenberg, S. J., Juodvalkis, J. R., Lloyd, M. C., Cobb, M., McEwan, R. W., 2021. Oak seedling performance and soil development across a forest restoration chronosequence following agriculture in the American Midwest—a greenhouse experiment. Restoration Ecology, e13587.
World Health Organization., 1982. Estimating human exposure to air pollutants. World Health Organization.
Yang, S. J., Sun, M., Yang, Q. Y., Ma, R. Y., Zhang, J. L., Zhang, S. B., 2016. Two strategies by epiphytic orchids for maintaining water balance: thick cuticles in leaves and water storage in pseudobulbs. Aob plants, 8.
Zhang, M., Zhang, L., Yao, X., Li, J., Deng, Q., 2022. Co-evaluation of plant leaf nutrient concentrations and resorption in response to fertilization under different nutrient-limited conditions. Diversity, 14(5), 385.
Zotz, G., Bogusch, W., Hietz, P., Ketteler, N., 2010. Growth of epiphytic bromeliads in a changing world: The effects of CO2, water and nutrient supply. Acta Oecologia, 36, 659-65.
Zotz, G., Hietz, P., 2001. The physiological ecology of vascular epiphytes: current knowledge, open questions. Journal of Experimental Botany, 52(364), 2067-2078.
Zotz, G. 1995. How fast does an epiphyte grow? Selbyana, 150-154.
Zotz, G. 2016. Plants on plants-the biology of vascular epiphytes (Vol. 15, p. 282). Cham: Springer International Publishing.