簡易檢索 / 詳目顯示

研究生: 曾茂仁
Zeng, Mao-Ren
論文名稱: 探討建模本位探究教學於化學電池的學習成效與建模能力
Investigating the Effectiveness of Modeling-based Inquire on Students’ Science Conceptual and Modeling Competence about Chemical Battery
指導教授: 邱美虹
Chiu, Mei-Hung
學位類別: 碩士
Master
系所名稱: 科學教育研究所
Graduate Institute of Science Education
論文出版年: 2016
畢業學年度: 104
語文別: 中文
論文頁數: 182
中文關鍵詞: 化學電池心智模式建模能力建模本位教學(MBI)
英文關鍵詞: Chemical battery, Mental model, Modeling competencies, Modeling-based learning
DOI URL: https://doi.org/10.6345/NTNU202204937
論文種類: 學術論文
相關次數: 點閱:279下載:103
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 學生學習科學方式即是建立模型的過程,並且在學習過程中,不斷修正與精緻化此模型使其能逐漸與科學模型相似,因此,在科學學習的過程中培養學生的建模能力是重要且必須的目標。本研究所使用的建構模型的過程包含八個步驟:模型選擇、模型建立、模型效化、模型分析、模型應用、模型調度、模型修正與模型重建(邱美虹,2014;Jong, Chiu, & Chung, 2015),在此過程中,每個歷程所應具備的能力即為建模能力。

    本研究根據課程內容可分成:研究一:化學電池的成分與關係;研究二:化學電池的交互作用,針對學生之科學概念、建模能力與心智模式分別進行討論。本研究的研究工具改編自邱美虹(2015)科技部計畫,由一位具有科教背景的高中化學教師,與兩位資深國中教師建立專家效度,且試卷信度為 0.76與0.79。本研究之研究對象:研究一:以51位臺北市國中學生為研究對象,分成建模文本教學組(N=24)與一般文本教學組(N=27);研究二:以研究一之建模文本組為研究對象,分成建模本位探究(N=12)與一般探究教學組(N=12)。資料收集包含課程之前、後化學電池測驗以及學生晤談資料。

    研究結果顯示,研究一:在化學電池的總分、成分、關係與系統此四項分類中,建模文本教學組的學習成效較一般文本教學組高;另一方面,學生建模能力的表現上,建模文本教學組,於選擇、建立、效化與應用中皆較一般文本教學組的建模能力階層高。研究二:在化學電池的總分與系統分類中,建模本位探究組的學習成效較一般探究教學組高;另一方面,學生建模能力的表現上,建模本位探究組,於建立、效化與平均建模能力皆較一般文本探究組的建模能力表現好。綜合以上研究結果可知,建模本位探究教學有助於學生在科學概念、建模能力與心智模式的學習與改變。

    This study investigated the effects of a modeling-based teaching and modeling-based inquiry on 7th and 8th graders’ modeling competencies.The modeling processes included model selection, model construction, model validation, model analysis, model deployment, and model reconstruction in the study. Students learned the chemistry battery with modeling-based text and modeling-based inquiry.

    According to the content, there are two subjects in the study. Subject one was targeted to explore the teacher providing the modeling view during the process of science learning. Fifty-one 7th and 8th graders from a local junior high school in Taipei city were involved in the subject one. The experiment group (N=24) was 7th and 8th graders in the science club, and the control group (N=27) was 8th graders in the normal classes. The difference between the experiment group and the control group was that the former was presented with explicit descriptions and representations of modeling processes. Subject two attempted to implement the model-based inquiry teaching framework in the laboratory activity. Twenty-four students from the subject one were involved in the subject two. The experiment group (N=12) was 7th graders, and the control group (N=12) was 8th graders. This study demonstrated that modeling-based teaching and modeling-based inquiry helped students learn the science concepts, develop their modeling competencies and promote their mental model to the science model.

    第壹章 緒論1 第一節 研究動機2 第二節 研究目的與研究問題3 第三節 名詞解釋5 第四節 研究範圍與限制7 第貳章 文獻探討 第一節 探究與探究教學10 第二節 建模歷程與建模能力13 第三節 心智模式17 第四節 化學電池相關研究19 第參章 研究方法23 第一節 研究設計23 第二節 研究對象25 第三節 教學與教材設計26 第四節 研究工具36 第五節 研究流程53 第六節 資料分析55 第肆章 研究結果59 第一節 不同教學策略對於化學電池科學概念的學習成効60 第二節 不同教學策略對於建模能力的表現情形78 第三節 化學電池心智模式的改變情形98 第四節 化學電池的另有概念115 第五節 建模能力與科學概念的相關123 第伍章 結論與建議131 第一節 結論132 第二節 研究意涵133 第三節 未來工作與研究方向135

    一、中文文獻
    吳百興, 張耀云, & 吳心楷. (2010). 科學探究活動中的科學推理. Research and Development, (56), 53-74.
    張志康, & 邱美虹. (2009). 建模能力分析指標的發展與應用-以電化學為例. 科學教育學刊, 17(4), 319-342.
    劉宏文, & 張惠博. (2001). 高中學生進行開放式探究活動之個案研究-問題的形成與解決.
    二、英文文獻
    Apedoe, X. S. (2008). Engaging students in inquiry: Tales from an undergraduate
    Bell, R. L., Smetana, L., & Binns, I. (2005). Simplifying inquiry instruction. The Science Teacher, 72(7), 30-33.
    Chang, H.-Y., Quintana, C., & Krajcik, J. S. (2010). The impact of designing and evaluating molecularanimations on how well middle school students understand the particulate nature of matter. Science Education, 94(1), 73–94.
    Chi, M. T. (2008). Three types of conceptual change: Belief revision, mental model transformation, and categorical shift. International handbook of research on conceptual change, 61-82.
    Chiu, M. H., & Chung, S. L. (2013). The use of multiple perspectives of conceptual change to investigate students’ mental models of gas particles. In Concepts of Matter in Science Education (pp. 143-168). Springer Netherlands.
    DC: National Academy Press
    diSessa, A. A., Gillespie, N. M., & Esterly, J. B. (2004). Coherence versus fragmentation in the development of the concept of force. Cognitive Science, 28(6), 843–900.
    Doymus, K., Karacop, A., & Simsek, U. (2010). Effects of jigsaw and animation techniques on students’ understanding of concepts and subjects in electrochemistry. Educational Technology Research and Development, 58(6), 671-691.
    Duit, R., Roth, W. M., Komorek, M., & Wilbers, J. (2001). Fostering conceptual change by analogies—between Scylla and Charybdis. Learning and Instruction, 11(4), 283-303.
    ecology. Journal of Science Education and Technology, 10(4), 319–345.
    Etheredge, S., & Rudnitsky, A. (2003). Guidelines for Developing Inquiry Units. Introducing Students to Scientific Inquiry, 27-50.
    Garnett, P. J., & Treagust, D. F. (1992). Conceptual difficulties experienced by senior high school students of electrochemistry: Electrochemical (galvanic) and electrolytic cells. Journal of Research in Science Teaching, (29), 1079-1099.
    Gentner, D. (1983). Structure-mapping: A theoretical framework for analogy. Cognitive science, 7(2), 155-170.geology laboratory-based course. Science Education, 92(4), 631-663.
    Gilbert, J. K., & Boulter, C. (1998). Models in explanations, Part 1: Horses for courses? International Journal of Science Education, 20(1), 83–97. graders' understanding for gathering and interpreting evidence in scientific
    Hestenes, D. (2010). Modeling theory for math and science education. InModeling students' mathematical modeling competencies (pp. 13-41). Springer US.
    Hofstein A. & Lunetta V. (1982) The role of laboratory inscience teaching: neglected aspects of research. Review ofEducational Research 52, 20–217.
    Hofstein, A., & Lunetta, V. N. (2004). The laboratory in science education: Foundations for the twenty-first century. Science education, 88(1), 28-54.
    Hogan, K., & Thomas, D. (2001). Cognitive comparisons of students’ systems modeling in investigations. Research in Science Education, 37(1), 75-97.
    Ioannides, C., & Vosniadou, C. (2002). The changing meanings of force. Cognitive Science, 2, 5–61.
    Jeong, H., Songer, N. B., & Lee, S.-Y. (2007). Evidentiary competence: Sixth
    Krajcik, J., Blumenfeld, P. C., Marx, R. W., Bass, K. M., Fredricks, J., & Soloway, E. (1998). Inquiry in project-based science classrooms: Initial attempts by middle school students. Journal of the Learning Sciences, 7(3-4), 313-350.
    Namdar, B., & Shen, J. (2015). Modeling-Oriented Assessment in K-12 Science Education: A synthesis of research from 1980 to 2013 and new directions. International Journal of Science Education, 37(7), 993-1023.
    National Research Council. (1996). National Science Education Standards. Washington,
    National Research Council. (2000). Inquiry and the National Science Education Standards. Washington, DC: National Academic Press.
    Osman, K., & Lee, T. T. (2014). Impact of interactive multimedia module with pedagogical agents on students’understanding and motivation in the learning of electrochemistry. International Journal of Science and Mathematics Education, 12(2), 395-421.
    Sanger, M. J., & Greenbowe, T. J. (1997). Common student misconceptions in electrochemistry: Galvanic, electrolytic, and concentration cells. Identifying, attributing, and dispelling student misconceptions in electrochemistry, 38.
    Schwarz, C. V., & White, B. Y. (2005). Metamodeling knowledge: Developing students' understanding of scientific modeling. Cognition and instruction, 23(2), 165-205.
    Schwarz, C. V., Reiser, B. J., Davis, E. A., Kenyon, L., Achér, A., Fortus, D., ... & Krajcik, J. (2009). Developing a learning progression for scientific modeling: Making scientific modeling accessible and meaningful for learners.
    Vosniadou, S., & Brewer, W. F. (1992). Mental models of the earth: A study of conceptual change in childhood. Cognitive psychology, 24(4), 535-585.
    Vosniadou, S., & Brewer, W. F. (1994). Mental models of the day/night cycle. Cognitive Science, 18, 123–183.
    Wu, H.-K. (2010). Modelling a complex system: Using novice-expert analysis for developing an effective technology-enhanced learning environment. International Journal of Science Education,32(2), 195–219.
    Yürük, N. (2007). The effect of supplementing instruction with conceptual change texts on students’ conceptions of electrochemical cells. Journal of science education and technology, 16(6), 515-523.
    Zimmerman, C. (2007). The development of scientific thinking skills in elementary and middle school. Developmental Review, 27(2), 172-223

    下載圖示
    QR CODE