簡易檢索 / 詳目顯示

研究生: 詹淑貞
Shu-Chen Chan
論文名稱: 混合SEM模型加入作答時間利用應試行為促進模型分析
Incorporating Response Time to Model Test Behavior with Mixture SEM
指導教授: 蔡蓉青
Tsai, Rung-Ching
學位類別: 碩士
Master
系所名稱: 數學系
Department of Mathematics
論文出版年: 2013
畢業學年度: 101
語文別: 英文
論文頁數: 52
中文關鍵詞: 作答時間混合Rasch 模型
英文關鍵詞: item response time, mixture Rasch model
論文種類: 學術論文
相關次數: 點閱:124下載:3
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 作答時間已被證明能夠辨別不同測試行為的考生以及混合試題反應理論
    模型已經提出了探索試題資料的反應模式。在近其的文獻中,混合Rasch 模
    型(mixture Rasch model, MRM) 加入試題反應時間(mixture Rasch model with response
    time components, MRM-RT) 透過資料分析顯示將作答行為分成兩類行為
    - 快速猜題、確實作答,比只有一類的作答行為- 確實作答,模型適配度較佳。
    然而,MRM-RT 無法解釋在快速猜測類中一些成員在作答時間要比同一類的成
    員少的很多。因此,可能要多加入一類群- 作答快速,幫助解釋資料。
    在這項研究中,我們試題反應和作答時間同時嵌入到混合的結構方程模型
    的分析框架,並多加入快速反應類群以促進模型分析,並重新分析數據。由模
    擬結果顯示,MRM-RT 的表現較優於MRM。具體來說,研究顯示MRM-RT 具
    有較好的收斂速度,得到更準確的參數估計,更好地描述應試行為,並允許評
    估測量潛在類群的不變性。此外,穩健標準誤差的最大似然估計比利用蒙特卡
    羅馬爾可夫鏈貝式估計需要花費的時間極少,使得MRM-RT 更容易研究估計。

    Item response time has been shown valuable in identifying different test behavior
    of the test takers and mixtures of item response models have been proposed
    to explore response patterns in test data. In recent literature, a mixture
    Rasch model with response time components (MRM-RT) showed that a two-class
    solution representing rapid-guessers and solution behavior examinees fit the test
    data better than a one-class solution. However, the two-class MRM-RT could not
    account for the much less response time of some members in the rapid-guessing
    class of the test data. Thus, the inclusion of an additional class of fast respondents,
    might be necessary to fulfill the assumption of conditional independence
    of item responses and response time given the latent class.
    In this study, we embed such a simultaneous analysis of item responses and
    response time into the mixture structural equation model framework which in
    turn facilitated the estimation of a three-class model with the fast responders
    class added, and reanalyze the empirical test data. Our simulation results indicated
    that the MRM-RT performed better than the mixture Rasch model alone.
    Specifically, it showed that MRM-RT has better convergence rate, yield more
    accurate item parameter estimates, describe better the test-taking behavior, and
    allow for assessing measurement invariance across latent classes as well. In addition,
    Maximum Likelihood estimation with robust standard errors takes much
    less time than using Monte Carlo Markov Chains for Bayesian estimation and
    therefore makes the estimation of MRM-RT more accessible to researchers.

    1 Introduction 7 2 Model 11 2.1 MRM-RT in Mixture SEM . . . . . . . . . . . . . . . . . . . . . . . . . 11 2.1.1 Mixture Rasch Model . . . . . . . . . . . . . . . . . . . . . . . 11 2.1.2 Mixture Response Time Model . . . . . . . . . . . . . . . . . . 12 2.1.3 MRM-RT . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13 2.2 Estimation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17 2.3 Identification . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17 3 Simulation Studies 20 3.1 Data Generation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20 3.2 Evaluation Criteria . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24 3.3 Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24 4 Applied Data Analysis 36 4.1 Data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36 4.2 Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37 5 Discussion 47 6 Conclusion 49

    Akaike, H. (1987). Factor analysis and AIC. Psychometrika, 52, 317-332.
    Choi, H. J. (2010). A Model that Combines Diagnostic Classification Assessment with
    Mixture Item Response Theory Models. Unpublished doctoral dissertation, University
    of Georgia, Athens.
    DeMars, C. E., & Wise, S. L. (2010). Can differential rapid-guessing behavior lead to
    differential item functioning. International Journal of Testing, 10(3), 207-229.
    Ferrando, P. J., & Lorenzo-Seva, U. (2007). An item response theory model for incorporating
    response time data in binary personality items. Applied Psychological
    Measurement, 31(6), 525-543.
    Fox, J. P., Hornke, L. F., Klein Entink, R. H., & Kuhn, J. T.(2009). Evaluating
    cognitive theory: A joint modeling approach using responses and response times. Psychological
    Methods, 14(1), 54-75.
    Huber, P. J. (1967). The behavior of maximum likelihood estimation under nonstandard
    conditions. Proceedings of the Fifth Berkeley Symposium on Mathematical
    Statistics and Probability, 1, 221-233.
    Hwang, W. C. (2011). DIF Detection for Polytomous Items Using Multiple-Group Categorical
    CFA. Unpublished master thesis, National Taiwan Normal University, Taipei.
    Lee, Y. H., & Chen, H. (2011). A review of recent response-time analysis in educational
    testing. Psychol Test Assess Model, 53(3), 359-379.
    Loeys, T., Rosseel, Y., & Baten, K. (2011). A joint modeling approach for reaction
    time and accuracy in psycholinguistic experiments. Psychometrika, 76(3), 487-503.
    Lu, J., Rouder, J. N., Speckman, P. L., Sun, D., & Zhou, D. (2003). A hierarchical
    Bayesian statistical framework for response time distributions. Psychometrika, 68,
    589-606.
    Maij-de Meij, A. M., Kelderman, H., & van der Flier, H. (2010). Improvement in
    detection of differential item functioning using a mixture item response theory model.
    Multivariate Behavioral Research, 45(6), 975-999.
    Maris, E. (1993). Additive and multiplicative models for gamma distributed variables,
    and their application as psychometric models for response times. Psychometrika, 58,
    445-469.
    McIntyre, H. H. (2011). Investigating response styles in self-report personality data
    via a joint structural equation mixture modeling of item responses and response times.
    Personality and Individual Differences, 50(5), 597-602.
    Meyer, J. P. (2010). A mixture Rasch model with item response time components.
    Applied Psychological Measurement, 34, 521-538.
    Millsap, R. E., & Yun-Tein, J. (2004). Assessing factorial invariance in orderedcategorical
    measures. Multivariate Behavioral Research, 39(3), 479-515.
    Muthén, L. K., & Muthén, B. O. (1998-2010). Mplus User’s Guide. Los Angeles:
    Muthén & Muthén.
    Oosterloo, S. J. (1975). Modellen voor reactie-tijden [Models for reaction times]. Unpublished
    master thesis, Faculty of Psychology, University of Groningen, The Netherlands.
    Oshima, T. C. (1994). The effect of speededness on parameter estimation in item
    response theory. Journal of Educational Measurement, 31, 200-219.
    Ranger, J., & Kuhn, J. T. (2012). Improving item response theory model calibration by
    considering response times in psychological tests. Applied Psychological Measurement,
    36(3), 214-231.
    Rasch, G. (1960). Probabilistic Models for Some Intelligence and Attainment Tests.
    Copenhagen, Denmark: Nielson & Lydiche.
    Roskam, E. E. (1987). Toward a psychometric theory of intelligence. Progress in
    mathematical psychology, 1, 151-174.
    Rost, J. (1990). Rasch models in latent classes: An integration of two approaches to
    item analysis. Applied Psychological Measurement, 14(3), 271-282.
    Scheiblechner, H. (1979). Specific objective stochastic latency mechanisms. Journal of
    Mathematical Psychology, 19, 18-38.
    Scheiblechner, H. (1985). Psychometric models for speed-test construction: The linear exponential model. In S. E. Embretson (Ed.), Test design: Developments in psychology
    and education (pp. 219-244). New York: Academic Press.
    Schnipke, D. L., & Scrams, D. J. (1997). Modeling item response times with a twostate mixture model: A new method of measuring speededness. Journal of Educational Measurement, 34, 213-232.
    Schnipke, D. L., & Scrams, D. J. (2002). Exploring issues of examinee behavior: Insights gained from response-time analyses. In C.N. Mills, M. Potenza, J.J. Fremer, & W. Ward (Eds.), Computer-based testing: Building the foundation for future assessments(pp. 237-266). Hillsdale, NJ: Lawrence Erlbaum Associates.
    Schwartz, G. (1978). Estimating the dimension of a model. Annals of Statistics, 6,461-464.
    Sclove, L. S. (1987). Application of model-selection criteria to some problems in multivariate
    analysis. Psychometrika, 52, 333-343.
    Tatsuoka, K. K., & Tatsuoka, M. M. (1980). A model for incorporating responsetime
    data in scoring achievement tests. In D. J. Weiss (Ed.), Proceedings of the 1979
    Computerized Adaptive Testing Conference (pp. 236-256). Minneapolis: University of
    Minnesota, Department of Psychology, Psychometric Methods Program.
    van der Linden, W. J. (2006). A lognormal model for response times on test items.
    Journal of Educational and Behavioral Statistics, 31(2), 181-204.
    van der Linden, W. J. (2007). A hierarchical framework for modeling speed and accuracy
    on test items. Psychometrika, 72(3), 287-308.
    van der Linden, W. J., Scrams, D. J., & Schnipke, D. L. (1999). Using response-time
    constraints to control for differential speededness in computerized adaptive testing.
    Applied Psychological Measurement, 23, 195-210.
    von Davier, M., & Carstensen, C. H. (2007). Multivariate and Mixture Distribution
    Rasch Models. New York, NY: Springer.
    Wang, T., & Hanson, B. A. (2005). Development and calibration of an item response
    model that incorporates response time. Applied Psychological Measurement, 29(5),
    323-339.
    Wise, S. L., & DeMars, C. E. (2006). An application of item response time: The
    effort-moderated IRT model. Journal of Educational Measurement, 43(1), 19-38.
    Wise, S. L., & Kong, X. J. (2005). Response time effort: A new measure of examinee
    motivation in computer-based tests. Applied Measurement in Education, 16, 163-183.

    下載圖示
    QR CODE