簡易檢索 / 詳目顯示

研究生: 呂蓓榮
論文名稱: 高中生使用鷹架式空氣汙染建模軟體的建模實務之研究
指導教授: 吳心楷
學位類別: 碩士
Master
系所名稱: 科學教育研究所
Graduate Institute of Science Education
論文出版年: 2010
畢業學年度: 98
語文別: 中文
論文頁數: 120
中文關鍵詞: 模型建模建模實務數位學習軟體
英文關鍵詞: model, modeling, modeling practice, digital learning software
論文種類: 學術論文
相關次數: 點閱:238下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本研究依據情境學習與社會建構的觀點,搭配鷹架理論,以探討高中生使用空氣汙染建模軟體所發展出的建模實務,以及可能遭遇的困難。
    研究對象為北市某高中的學生,採以兩人為一組的方式進行建模活動,共12組(23人),而有效樣本為9組(18人),再依據個人概念試題的前、後測驗成績分成高分群與低分群。活動時間總計四週共16小時。資料收集方面,包括概念試題前後測、課室錄影、螢幕側錄、小組錄音與學生作品。
    研究結果顯示,學生在整體的概念上有顯著性的進步,說明了提供機會讓學生參與擬真性的建模活動,可促進概念的理解。高分群在使用軟體功能的事件量上,比低分群多,但統計結果顯示,未達顯著性差異。而學生所進行的建模實務來說,分析實務方面,發現學生可提出其他軟體或課堂上所沒有探討且可能影響汙染物散佈的變因;此外,也能以直觀的方式探討模擬圖中汙染物的散佈情形。關係推理方面,則以單變因的推理為主。實驗模擬方面,學生未能以系統化的方式進行模擬。評估方面,學生並未根據模擬結果來修正模型。

    This research is based on situated learning and social construction point of view, with scaffolding theory, to examine high school students’ modeling practices developed by the use of air pollution modeling software, and potential difficulties.
    In this study, 18 students, working in dyads, and grouping into high score group and low score group depending on their pre- and post- tests score. This modeling unit took about 16 hours per four days. Data collection, including the pre- and post- tests, classroom video, screen-side recorded, audio records and students’ product.
    The results show that students’ understandings about air quality were significantly improved. And High score group use software features frequently higher than low score group, but didn’t show a significantly difference between the two groups. In this study, the modeling practices students developed, inculding analysis, relationship reasoning, simulation, and evaluation. The results show that students can said more variables that might affect pollutants dispersion than ones learned from class or provided by modeling software. Besides they can interprete simulated result without any difficult. In the relationship reasoning, students often examine how the single variable affect pollutants dispersion. In the simulation,students did not manipulate variables systematically. In the last modeling practice, evaluation, student didn’t modify model according to simulated result.

    摘要.......................................................I ABSTRACT..................................................II 目錄.....................................................III 第壹章 緒論.................................................1 第一節 研究動機.............................................1 第二節 研究重要性............................................3 第三節 研究目的與研究問題.....................................4 第四節 研究範圍與限制........................................4 第五節 名詞釋義.............................................5 第貳章 文獻探討.............................................7 第一節 模型.................................................7 第二節 建模實務............................................12 第三節 鷹架...............................................20 第參章 研究方法............................................25 第一節 研究設計............................................25 第二節 研究對象............................................26 第三節 研究者角色..........................................28 第四節 數位建模學習環境.....................................28 第五節 資料收集............................................41 第六節 資料分析............................................44 第肆章 研究結果............................................53 第一節 高中生對空氣汙染和大氣運動的概念理解....................53 第二節 空氣汙染建模軟體的使用情形.............................55 第三節 學生的建模實務.......................................67 第伍章 結論與建議..........................................103 第一節 結論...............................................103 第二節 討論...............................................106 第三節 建議...............................................107 參考資料..................................................109 附錄.....................................................112 圖目錄 圖2-2-1 建模實務架構的整合..................................18 圖3-4-1 建模模式的介面 .....................................31 圖3-4-2 測詴模式的介面 .....................................32 圖3-4-3 目前差值視窗 ......................................34 圖3-4-4 排放源特性參數輸入視窗 ..............................34 圖3-4-5 風場參數輸入視窗 ...................................35 圖3-4-6 穩定度參數輸入視窗 .................................35 圖3-4-7 應用模式的介面 .....................................36 圖3-4-8 完整參數輸入視窗 ...................................37 圖3-4-9 個案模式的介面 .....................................38 圖3-4-10 對照折線圖視窗 ....................................39 圖3-4-11 逐時差值視窗 .....................................40 圖3-4-12 參數輸入視窗 .....................................40 圖3-5-1 大氣垂直溫壓結構與大氣穩定度的題型範例.................43 圖3-5-2 大氣運動與汙染物的擴散的題型範例 .....................43 圖3-6-1 東北風-風速15與東北風-風速2的模擬圖 ..................46 圖3-6-2 西南風-二高木柵與海陸風-二高木柵 .....................48 圖4-3-1 教師提供的模擬圖 ...................................68 圖4-3-2 教師提供的模擬圖 ...................................77 圖4-3-3 條件為西南風-二高木柵與東北風-二高木柵的模擬圖 ........79 圖4-3-4 西南風-二高木柵與東北風-二高木柵模擬圖某定點的對照折線圖.80 圖4-3-5 條件為東北風-風速15與東北風-風速1的模擬圖 ............81 圖4-3-6 學生挑選實驗參數值時,各種特徵的事件統計 ..............88 圖4-3-7 學生發現預測內容與模擬結果不符合時的應對辦法 ..........93 圖4-3-8 模擬條件為東北風-風速15與東北風-風速10的模擬圖 ........95 圖4-3-9 條件為東北風-風速15與東北風-風速10的「目前差值」圖 ....95 圖4-3-10 模擬條件為東北風-風速15與東北風-風速10的模擬圖 .......97 圖4-3-11 條件為東北風-風速15與東北風-風速10的「目前差值」圖 ...97 圖4-3-12 模擬條件為西南風-風速3與西南風-風速10的模擬圖 ........98 表目錄 表2-2-1 建模困難的文獻整理 .................................19 表3-2-1 小組成員個人概念詴題前、後測驗成績與平均..............27 表3-4-1 單元活動簡介......................................29 表3-5-1 資料來源與資料量統計 ...............................41 表3-5-2 題目分類細目表 .....................................43 表3-6-1 建模實務編碼表 .....................................50 表3-6-2 空氣汙染建模軟體的功能介紹 ..........................51 表3-6-2 空氣汙染建模軟體的功能介紹(續) .....................52 表3-6-3 研究問題與資料來源對應表.............................52 表4-1-1 概念詴題統計量表 ...................................53 表4-1-2 概念詴題的前測-後測成對樣本T檢定量 ...................54 表4-2-1 建模活動與軟體各模式的事件統計 .......................56 表4-2-2 學生在各模式下使用軟體功能的次數統計 .................58 表4-2-3 高、低分群於各模式的事件統計 ........................60 表4-2-4 高、低分群於測詴模式中使用各項功能的事件統計 ..........62 表4-2-5 高、低分群於應用模式的事件統計 .......................64 表4-2-6 高、低分群於個案模式的事件統計 .......................66 表4-3-1 焦點組判斷A、B與C三點汙染物濃度大小的變因種類與其事件量.69 表4-3-2 焦點組判斷A、B與C三點汙染物濃度大小的變因種類與理由 ....70 表4-3-3 焦點組指出各種興建火力發電廠時頇考量的變因種類與其事件量.71 表4-3-4 焦點組指出興建火力發電廠頇考量的變因種類與理由 .........74 表3-4-5 焦點組於各活動進行定點濃度值分析的事件量 ..............76 表3-4-6 焦點組於各活動進行濃度分佈情形分析的事件量.............76 表4-3-7 焦點組結合雙變因或三變因的推理與其事件量 ..............83 表4-3-8 焦點組探討雙變因或三變因對汙染物散佈的影響 ............86 表4-3-9 學生預計收集的資料..................................91 表4-3-10 焦點組根據預測內容與模擬圖的結果 ....................92 表4-3-11 學生分別在請教教師前、中、後期,討論適用與不適用條件的事件統計 ... 100 表4-3-12 學生提出適用條件的類型與被探討的事件統計 ........... 101 表4-3-13 學生提出不適用條件的類型與被探討的事件統計 ......... 101

    中文部分:
    Berk, L. E., & Winsler, A.(1995/1999)。鷹架兒童的學習:維高斯基與幼兒教育(谷瑞勉譯)。台北市:心理出版社有限公司。
    川口寅之輔、米山正信、阪川武志與橫山隆允(1993)。牛頓科學硏習百科:化學. 台北市:牛頓出板股份有限公司。
    王文科與王智弘(2007)。教育研究法 (11 版)。台北市:五南圖書出版股份有限公司。
    李岱螢(2006)。不同認知結構學生於鷹架式建模課程中科學概念學習之個案研究。士論文,國立台灣師範大學,台北市。
    黃福坤。(2007)。理想氣體的分子模型。轉自http://www.phy.ntnu.edu.tw/java/idealGas/
    趙大衛(2009 )。普通高級中學基礎生物(全)。台南市:翰林出版事業股份有限公司。

    英文部分:
    Barab, S. A., Hay, K. E., Barnett, M., & Squire, K. (2001 ). Constructing virtual worlds: Tracing the historical development of learner practices. Cognition and Instruction, 19 (1), 47-94.
    Benson, H. (1996). University physics (Revised ed.). New York: John Wiley & Sons, Inc.
    Brown, J. S., Collins, A., & Duguid, P. (1989). Situated cognition and the culture of learning. Educational Researcher, 18 (1), 32-42.
    Creswell, J. W. (1994). Research design: Qualitative and quantitative approaches. Thousand Oaks, CA: Sage.
    Fretz, E. B., Wu, H.-K., Zhang, B., Davis, E. A., Krajcik, J. S., & Soloway, E. (2002). An investigation of software scaffolds supporting modeling practices. Research in Science Education, 32 (4), 567-589.
    Gilbert, J. K., Boulter, C. J., & Elmer, R.(2000). Positioning models in science education and in design and technology education. In J. K. Gilbert & C. J. Boulter (Eds.), Developing models in science education (pp. 3-17). Boston: Kluwer Academic Publishers.
    Gobert, J. D., & Buckley, B. C.(2000). Introduction to model-based teaching and learning in science education. International Journal of Science Education, 22 (9), 891-894.
    Grosslight, L., Unger, C., & Jay, E. (1991). Understanding models and their use in science: Conceptions of middle and high school students and experts. Journal of Research in Science Teaching, 28(9), 799-822.
    Harrison, A. G., & Treagust, D. F. (2000). A typology school science models. International Journal of Science Education, 22(9), 1011-1026.
    Hestenes, D. (2006). Notes for a modeling theory of science, cognition and instruction. Paper presented at the Modelling in Physics and Physics Education, Amsterdam, Netherlands.
    Hogan, K., & Thomas, D.(2001). Cognitive comparisons of students’systems modeling in ecology. Journal of Science Education and Technology, 10 (4 ), 319-345.
    Jordan, B., & Henderson, A. (1995 ). Interaction analysis: Foundations and practice. Journal of the Learning Sciences, 4 (1 ), 39-103.
    Kozma, R., Chin, E., Russell, J., & Marx, N. (2000 ). The roles of representations and tools in the chemistry laboratory and their implications for chemistry instruction. Journal of the Learning Sciences, 9 (2 ), 105-143.
    Krajcik, J. S., Czerniak, C. M., & Berger, C. F. (2003 ). Teaching science in elementary and middle school classrooms: a project approach (Second ed. ). New York: McGraw-Hill Companies, Inc.
    Lave, J., & Wenger, E. (1991 ). Situated Learning: Legitimate Peripheral Participation. New York, NY: Cambridge University Press.
    Lehrer, R., & Schauble, L. (2006 ). Cultivating model-based reasoning in science education. In R. K. Sawyer (Ed. ), The Cambridge Handbook of the Learning Sciences (pp. 371-388 ). Cambridge, UK: Cambridge University Press.
    Lohner, S., van Joolingen, W. R., Savelsbergh, E. R., & van Hout-Wolters, B. (2005 ). Students' reasoning during modeling in an inquiry learning environment. Computers in Human Behavior, 21, 441-461.
    Metcalf, S. J., Krajcik, J., & Soloway, E. (2000 ). Model-It: a design retrospective. Paper presented at the Innovations science and athematics education: advanced designs for technologies of learning, Mahwah: NJ.
    Palincsar, A. S. (1998 ). Social constructivist perspectives on teaching and learning. Annual Reviews of Psychology, 49, 345-375.
    Penner, D. E. (2000 ). Cognition, computers, and synthetic science: Building knowledge and meaning through modeling. Review of Research in Education, 25 (1 ), 1-35.
    Penner, D. E., Lehrer, R., & Schauble, L. (1998 ). From physical models to biomechanics: a design-based modeling approach. Journal of the Learning Sciences, 7 (3&4 ), 429-449.
    Quintana, C., Reiser, B. J., A.Davis, E., Krajcik, J., Fretz, E., Duncan, R. G., et al. (2004 ). A scaffolding design framework for software to support science inquiry. Journal of the Learning Sciences, 13 (3 ), 337-386.
    Quintana, C., Zhang, M., & Krajcik, J. (2005 ). A framework for supporting metacognitive aspects of online inquiry through software-based scaffolding. Educational Psychologist, 40 (4 ), 235-244.
    Rogoff, B. (1990 ). Apprenticeship in thinking: Cognitive development in social context. New York: Oxford University Press.
    Roth, W.-M., & McGinn, M. K. (1998 ). Inscriptions: Toward a theory of representing as social practice. Review of Educational Research, 68 (1 ), 35-59.
    Schwarz, C. V., Reiser, B. J., Davis, E. A., Kenyon, L., Acher, A., Fortus, D., et al. (2009 ). Developing a learning progression for scientific modeling: making scientific modeling accessible and meaningful for learners. Journal of Research in Science Teaching, 46 (6 ), 632-654.
    Sins, P. H., Savelsbergh, E. R., & Joolingen, W. R. v. (2005 ). The difficult process of scientific modelling: an analysis of novices' reasoning during computer-based modelling. International Journal of Science Education, 27 (14 ), 1695-1721.
    Stratford, S. J., Krajcik, J., & Soloway, E. (1998 ). Secondary students' dynamic modeling processes: Analyzing, reasoning about, synthesizing, and testing models of stream ecosystems. Journal of Science Education and Technology, 7 (3 ), 215-234.
    Vygotsky, L. S. (1978 ). Mind in society: The development of higher psychological processes. Cambridge, MA: Harvard University Press.
    Wenger, E. (1998 ). Communities of practices: Learning, meaning, and identity. London: Cambridge University Press.
    Wertsch, J. V. (1991 ). Voices of the mind: a sociocultural approach to mediated action. USA: Harvard University press.
    Wood, D., Bruner, J. S., & Ross, G. (1976 ). The role of tutoring in problem solving. Journal of Child Psychology and Psychiatry, 17, 89-100.
    Wu, H.-K. (2010 ). Modeling a complex system: using novice-expert analysis for developing an effective technology-enhanced learning environment. International Journal of Science Education, 32 (2 ), 195-219.
    Yin, R. K. (2006 ). Case study research: Design and methods. In J. L. Green, G. Camilli & P. B. Elmore (Eds. ), Handbook of complementary methods in education research (3rd ed., pp. 111-121 ). Mahwah, NJ: Erlbaum.

    無法下載圖示 本全文未授權公開
    QR CODE