簡易檢索 / 詳目顯示

研究生: 沈柏均
Shen, Po-Chun
論文名稱: 28 GHz 向量合成式相移器與低雜訊放大器設計
Design of 28-GHz Vector Sum Phase Shifters and a Low Noise Amplifier
指導教授: 蔡政翰
Tsai, Jen-Han
學位類別: 碩士
Master
系所名稱: 電機工程學系
Department of Electrical Engineering
論文出版年: 2020
畢業學年度: 108
語文別: 中文
論文頁數: 152
中文關鍵詞: 第五代行動通訊向量合成式相移器低雜訊放大器相位陣列
英文關鍵詞: fifth-generation mobile communication, Phased Array, beamforming
DOI URL: http://doi.org/10.6345/NTNU202001569
論文種類: 學術論文
相關次數: 點閱:166下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 第一章 緒論 1 1.1 研究背景與動機 1 1.2 文獻探討 3 1.2.1 相移器文獻探討 3 1.2.2 低雜訊放大器文獻探討 7 1.3 研究成果 9 第二章 相移器介紹 10 2.1 簡介 10 2.2 相移器參數介紹 12 2.2.1 相位差 (Phase Difference) 12 2.2.2 插入損耗、振幅誤差 (Insertion Loss, Amp. Error) 12 2.2.3 RMS 相位差 (RMS Phase Error) 12 2.2.4 RMS振幅誤差 (RMS Amplitude Error) 13 2.2.5 1dB增益壓縮點 ("P1dB" ) 13 2.2.6 反射損耗 (Return Loss) 13 2.3 相移器電路介紹 14 2.3.1 傳輸線式相移器 14 2.3.2 開關式相移器 14 2.3.3 反射式相移器 15 2.3.4 向量合成式相移器 16 2.4 正交相位產生器介紹 17 2.4.1 差動相位產生器介紹 17 2.4.2 正交相位產生器介紹 18 2.5 向量合成器介紹 21 2.6 向量合成式相移器探討 23 第三章 28 GHz向量合成式相移器設計 24 3.1 簡介 24 3.2 向量合成式相移器電路設計 25 3.3 電路架構 25 3.4 主動電路部分設計 26 3.4.1 電晶體尺寸設計 27 3.5 被動部分電路設計 32 3.5.1 多相位濾波器設計 32 3.5.2 正交耦合器設計 36 3.5.3 Marchand Balun 設計 39 3.5.4 正交相位產生器設計 44 3.6 向量合成式相移器模擬結果 46 3.7 向量合成式相移器量測結果 53 3.8 問題及討論 59 3.9 總結 61 第四章 28 GHz向量合成式相移器含四相位產生器匹配網路設計 62 4.1 主動部分電路設計 62 4.2 被動部分電路設計 62 4.2.1 正交耦合器設計 62 4.2.2 Marchand Balun 設計 66 4.2.3 正交相位產生器設計 70 4.3 向量合成式相移器模擬結果 73 4.4 向量合成式相移器量測結果 81 4.5 問題及討論 93 4.6 總結 100 第五章 28 GHz低雜訊放大器設計 102 5.1 簡介 102 5.2 28GHz共源級與疊接組態比較分析 104 5.3 28GHz共源級與疊接組態比較分析 104 5.3.1 共源級組態放大器分析 104 5.3.2 疊接組態放大器分析 110 5.3.3 雜訊觀點分析 110 5.3.4 反射係數觀點分析 115 5.4 最佳疊接組態低雜訊放大器分析 119 5.5 28GHz雙級串接疊接組態低雜訊放大器設計 126 5.5.1 電路架構 126 5.5.2 匹配網路設計 127 5.5.3 偏壓電路設計 130 5.6 低雜訊放大器模擬結果 132 5.7 低雜訊放大器量測結果 137 5.8 問題與討論 141 5.9 總結 143 第六章 結論 144 參 考 文 獻 145 自 傳 152 學 術 成 就 152

    [1]F. Meng, K. Ma, K. S. Yeo, and S. Xu, “A 57-to-64-GHz 0.094-mm2 5-bit Passive Phase Shifter in 65-nm CMOS,” IEEE Transactions on Very Large Scale Integration Systems., vol. 24, no. 5, pp. 1917-1925, May 2016.
    [2]H. Alsuraisry, J. H. Cheng, H. W. Wang, J. Y. Zhong, J. H. Tsai, and T. W. Huang, “A X-band digitally controlled 5-bit phase shifter in 0.18-μm CMOS technology,” Asia-Pacific Microwave Conference., Nanjing, China, Dec. 2015, pp. 1-3.
    [3]J. G. Yang, and K. Yang, “Ka-Band 5-Bit MMIC Phase Shifter Using InGaAs PIN Switching Diodes,” IEEE Microwave and Wireless Components Letters., vol. 21, no. 3, pp. 151-153, March 2011.
    [4]W. Tseng, C. Lin, Z. Tsai and H. Wang, “A miniature switching phase shifter in 0.18-µm CMOS,” Asia Pacific Microwave Conference., Singapore, 2009, pp. 2132-2135.
    [5]R. Garg and A. S. Natarajan, “A 28-GHz Low-Power Phased-Array Receiver Front-End With 360° RTPS Phase Shift Range,” IEEE Transactions on Microwave Theory and Techniques., vol. 65, no. 11, pp. 4703-4714, Nov. 2017.
    [6]Q. Zheng, Z. Wang, K. Wang, G. Wang, H. Xu, L. Wang, W. Chen, M. Zhou, Zhengliang Huang, and Faxin Yu, “Design and Performance of a Wideband Ka-Band 5-b MMIC Phase Shifter,” IEEE Microwave and Wireless Components Letters., vol. 27, no. 5, pp. 482-484, May. 2017.
    [7]G. S. Shin, J. S. Kim, H. M. Oh, S. Choi, C. W. Byeon, J. H. Son, J. H. Lee, and C. Y. Kim, “Low Insertion Loss Compact 4-bit Phase Shifter in 65 nm CMOS for 5G Applications,” IEEE Microwave and Wireless Components Letters, vol. 26, no. 1, pp. 37-39, Jan. 2016.
    [8]J. G. Yang, and K. Yang, “Ka-Band 5-Bit MMIC Phase Shifter Using InGaAs PIN Switching Diodes,” IEEE Microwave and Wireless Components Letters., vol. 21, no. 3, pp. 151-153, Mar. 2011
    [9]M. Wang, F. Ullah, X. Wang, Y. Xiao and Y. Liu, "A 25-31 GHz 6-bit Switch-type Phase Shifter in 0.13um SOI CMOS Process for 5G mmWave Phased Array Communications," International Conference on Solid-State and Integrated Circuit Technology., Qingdao, 2018, pp. 1-3.
    [10]J. Park, S. Kong, S. Jang, H. D. Lee, K. Kim and K. C. Lee, "Design of 6-Bit 28GHz Phase Shifter in 65NM CMOS," Asia-Pacific Microwave Conference., Kyoto, Japan, 2018, pp. 1513-1515.
    [11]N. Mazor, O. Katz, R. Ben-Yishay, D. Liu, A. V. Garcia and D. Elad, "SiGe based Ka-band reflection type phase shifter for integrated phased array transceivers," International Microwave Symposium., San Francisco, CA, 2016, pp. 1-4.
    [12]L. Huang, Y. Lin and C. Kuo, "A 38 GHz low-loss reflection-type phase shifter," Silicon Monolithic Integrated Circuits in RF Systems., Phoenix, AZ, 2017, pp. 54-56.
    [13]J. Lyu, S. Huang and H. Chuang, "K-band CMOS phase shifter with low insertion-loss variation," Asia Pacific Microwave Conference Proceedings., Kaohsiung, 2012, pp. 88-90.
    [14]P. Gu and D. Zhao, "Ka-Band CMOS 360° Reflective-Type Phase Shifter with ±0.2 dB Insertion Loss Variation Using Triple-Resonating Load and Dual-Voltage Control Techniques," Radio Frequency Integrated Circuits Symposium., Philadelphia, PA, 2018, pp. 140-143.
    [15]R. Garg and A. S. Natarajan, "A 28-GHz Low-Power Phased-Array Receiver Front-End With 360° RTPS Phase Shift Range," Transactions on Microwave Theory and Techniques., vol. 65, no. 11, pp. 4703-4714, Nov. 2017.
    [16]Y. Chang, Z. Ou, H. Alsuraisry, A. Sayed and H. Lu, "A 28-GHz Low-Power Vector-Sum Phase Shifter Using Biphase Modulator and Current Reused Technique," Microwave and Wireless Components Letters, vol. 28, no. 11, pp. 1014-1016, Nov. 2018
    [17]T. Maruyama, K. Tsutsumi, E. Taniguchi and M. Shimozawa, "1.4 deg.-rms 6-bit vector-sum phase shifter calibrating I-Q generator error by VGA for high SHF wide-band massive MIMO in 5G," Asia-Pacific Microwave Conference., New Delhi, 2016, pp. 1-4.
    [18]J. Pang, R. Kubozoe, Z. Li, M. Kawabuchi and K. Okada, "A 28GHz CMOS Phase Shifter Supporting 11.2Gb/s in 256QAM with an RMS Gain Error of 0.13dB for 5G Mobile Network," European Microwave Conference, Madrid, 2018, pp. 807-810.
    [19]J. Xia and S. Boumaiza, "Digitally-Assisted 28GHz Active Phase Shifter with 0.1dB/0.5° RMS Magnitude/Phase Errors and Enhanced Linearity," Transactions on Circuits and Systems II: Express Briefs.
    [20]J. S. Park and H. Wang, "A K-band 5-bit digital linear phase rotator with folded transformer based ultra-compact quadrature generation," Radio Frequency Integrated Circuits Symposium, Tampa, FL, 2014, pp. 75-78.
    [21]Z. Iskandar et al., “A 30–50 GHz reflection-type phase shifter based on slow-wave coupled lines in BiCMOS 55 nm technology,” European Microwave Conference (EuMC)., pp. 1413-1416, Jan. 2016.
    [22]H. Jia, B. Chi, L. Kuang and Z. Wang, "A 38- to 40-GHz Current-Reused Active Phase Shifter Based on the Coupled Resonator," Transactions on Circuits and Systems II: Express Briefs., vol. 61, no. 12, pp. 917-921, Dec. 2014.
    [23]T. Shimura, T. Ohshima and Y. Ohashi, "Low power consumption vector-sum phase shifters using zero-pi amplifiers for millimeter-wave beamforming," European Microwave Conference., Nuremberg, 2017, pp. 42-45.
    [24]Y. H. Lin and H. Wang, "A low phase and gain error passive phase shifter in 90 nm CMOS for 60 GHz phase array system application," MTT-S International Microwave Symposium., San Francisco, CA, 2016, pp. 1-4.
    [25]T. Li and H. Wang, "A Millimeter-Wave Fully Integrated Passive Reflection-Type Phase Shifter With Transformer-Based Multi-Resonance Loads for 360°Phase Shifting," Transactions on Circuits and Systems I: Regular Papers., vol. 65, no. 4, pp. 1406-1419, April 2018.
    [26]N. Mazor, O. Katz, R. Ben-Yishay, D. Liu, A. V. Garcia and D. Elad, "SiGe based Ka-band reflection type phase shifter for integrated phased array transceivers," International Microwave Symposium., San Francisco, CA, 2016, pp. 1-4.
    [27]C. Li, O. El-Aassar, A. Kumar, M. Boenke and G. M. Rebeiz, "LNA Design with CMOS SOI Process-l.4dB NF K/Ka band LNA," 2018 IEEE/MTT-S International Microwave Symposium - IMS, Philadelphia, PA, 2018, pp. 1484-1486.
    [28]A. A. Nawaz, J. D. Albrecht and A. Çağrı Ulusoy, "A Ka/V Band-Switchable LNA With 2.8/3.4 dB Noise Figure," in IEEE Microwave and Wireless Components Letters, vol. 29, no. 10, pp. 662-664, Oct. 2019.
    [29]S. Kong, H. Lee, S. Jang, J. Park, K. Kim and K. Lee, "A 28-GHz CMOS LNA with Stability-Enhanced Gm-Boosting Technique Using Transformers," 2019 IEEE Radio Frequency Integrated Circuits Symposium (RFIC), Boston, MA, USA, 2019, pp. 7-10,.
    [30]M. Keshavarz Hedayati, A. Abdipour, R. Sarraf Shirazi, C. Cetintepe and R. B. Staszewski, "A 33-GHz LNA for 5G Wireless Systems in 28-nm Bulk CMOS," in IEEE Transactions on Circuits and Systems II: Express Briefs, vol. 65, no. 10, pp. 1460-1464, Oct. 2018.
    [31]Y. Lo and J. Kiang, "Design of Wideband LNAs Using Parallel-to-Series Resonant Matching Network Between Common-Gate and Common-Source Stages," in IEEE Transactions on Microwave Theory and Techniques, vol. 59, no. 9, pp. 2285-2294, Sept. 2011.
    [32]G. O. Arican, B. Dokmetas, N. Akcam and E. Yazgan, "28-36 GHz MMIC LNA Design for Satellite Applications," 2019 11th International Conference on Electrical and Electronics Engineering (ELECO), Bursa, Turkey, 2019, pp. 726-729.
    [33]S. Zhang, J. Xu, P. Zheng, Y. Huang and X. Tong, "23-31GHz Low Noise Amplifier with 2.5dB NF Using 100 nm GaN on Silicon Technology," 2018 Asia-Pacific Microwave Conference (APMC), Kyoto, 2018, pp. 216-218.
    [34]S. D. Nsele et al., "Ka-band low noise amplifiers based on InAlN/GaN technologies," 2015 International Conference on Noise and Fluctuations (ICNF), Xian, 2015, pp. 1-4.
    [35]G. O. Arican, N. Akcam and E. Yazgan, "Ku-Band MMIC LNA Design for Space Applications," 2019 6th International Conference on Electrical and Electronics Engineering (ICEEE), Istanbul, Turkey, 2019, pp. 274-278.
    [36]G. Polli et al., "Ka-/V-band self-biased LNAs in 70 nm GaAs/InGaAs Technology," 2018 14th Conference on Ph.D. Research in Microelectronics and Electronics (PRIME), Prague, 2018, pp. 197-200.
    [37]Y. Chang, Z. Ou, H. Alsuraisry, A. Sayed and H. Lu, "A 28-GHz Low-Power Vector-Sum Phase Shifter Using Biphase Modulator and Current Reused Technique," in IEEE Microwave and Wireless Components Letters, vol. 28, no. 11, pp. 1014-1016, Nov. 2018.
    [38]F. Akbar and A. Mortazawi, "A New Integrated K-Band Analog Vector Sum Phase Shifter," 2018 IEEE/MTT-S International Microwave Symposium - IMS, Philadelphia, PA, 2018, pp. 1441-1444.
    [39]林芳銘,“3.5 GHz向量合成式相移器與38 GHz鏡像抑制降頻器設計”,國立臺灣師範大學電機工程研究所碩士論文,民國108年。
    [40]蕭璿,“應用於毫米波相位陣列系統之相移器設計”,國立臺灣師範大學電機工程研究所碩士論文,民國108年。
    [41]張瑞安,“X頻帶接收器前端電路與E頻帶低雜訊放大器設計與實現”,國立臺灣師範大學電機工程研究所碩士論文,民國103年。
    [42]林繼揚,“應用於77GHz汽車肥壯雷達系統之毫米波積體電路設計”,國立臺灣師範大學電機工程研究所碩士論文,民國101年。
    [43]吳仁鉅,“60-GHz單端轉差動向量合成式相移器之研製”,國立臺灣大學電機資訊學院電信工程學研究所碩士論文,民國99年。
    [44]David M. Pozar , Microwave Engineering-4th ed., United States of America : John Wiley & Sons, Inc, 2011
    [45]工研院資通所, 打造5G時代的關鍵技術 毫米波相控整合晶片開發[online],Available:https://ictjournal.itri.org.tw/Content/Messagess/contents.aspx?&MmmID=654304432061644411&CatID=654313611231473607&MSID=1071253656774271671
    [46]Pei-Si Wu, Hong-Yeh Chang, Ming-Da Tsai, Tian-Wei Huang and Huei Wang, "New miniature 15-20-GHz Continuous-phase/Amplitude Control MMICs using 0.18-μm CMOS technology," in IEEE Transactions on Microwave Theory and Techniques, vol. 54, no. 1, pp. 10-19, Jan. 2006.
    [47]Po-Yu Chen, Tian-Wei Huang, Huei Wang, Yu-Chi Wang, Chung-Hsu Chen and Pane-Chane Chao, "K-band HBT and HEMT monolithic active phase shifters using vector sum method," in IEEE Transactions on Microwave Theory and Techniques, vol. 52, no. 5, pp. 1414-1424, May 2004.
    [48]Kwang-Jin Koh and Gabriel M. Rebeiz, “0.13-μm CMOS phase shifters for X-, Ku-, and K-band phased arrays,” IEEE J. Solid-State Circuits, vol. 42, no. 11, pp. 2535-2546, Nov. 2007.
    [49]Praveen Babu Vadivelu, Padmanava Sen, Saikat Sarkar, Debasis Dawn, Stephane Pinel, and Joy Laskar, “Integrated CMOS mm-wave phase shifters for single chip portable radar,” in IEEE MTT-S Int. Microw. Symp. Dig., Jun. 2009, pp. 565-568.
    [50]P. Peng, J. Kao and H. Wang, "A 57-66 GHz Vector Sum Phase Shifter with Low Phase/Amplitude Error Using a Wilkinson Power Divider with LHTL/RHTL Elements," 2011 IEEE Compound Semiconductor Integrated Circuit Symposium (CSICS), Waikoloa, HI, 2011, pp. 1-4.
    [51]Y. Yao, Z. Li, G. Cheng, L. Luo, W. He and Q. Li, "A 6-bit Active Phase Shifter for X- and Ku-band Phased Arrays," 2018 IEEE International Conference on Integrated Circuits, Technologies and Applications (ICTA), Beijing, China, 2018, pp. 124-125.
    [52]T. Shimura, T. Ohshima and Y. Ohashi, "Low power consumption vector-sum phase shifters using zero-pi amplifiers for millimeter-wave beamforming," 2017 47th European Microwave Conference (EuMC), Nuremberg, 2017, pp. 42-45.
    [53]J. S. Park and H. Wang, "A K-band 5-bit digital linear phase rotator with folded transformer based ultra-compact quadrature generation," 2014 IEEE Radio Frequency Integrated Circuits Symposium, Tampa, FL, 2014, pp. 75-78.
    [54]J. Xia and S. Boumaiza, "Digitally Assisted 28 GHz Active Phase Shifter With 0.1 dB/0.5° RMS Magnitude/Phase Errors and Enhanced Linearity," in IEEE Transactions on Circuits and Systems II: Express Briefs, vol. 66, no. 6, pp. 914-918, June 2019.
    [55]Y. Yu, P. G. M. Baltus, A. de Graauw, E. van der Heijden, C. S. Vaucher and A. H. M. van Roermund, "A 60 GHz Phase Shifter Integrated With LNA and PA in 65 nm CMOS for Phased Array Systems," in IEEE Journal of Solid-State Circuits, vol. 45, no. 9, pp. 1697-1709, Sept. 2010.

    無法下載圖示 電子全文延後公開
    2025/09/14
    QR CODE