研究生: |
李英瑋 Lee, Ying-Wei |
---|---|
論文名稱: |
不同層級游泳運動員在不同捷泳速度下肩和髖部側傾之運動學 Kinematic Differences in Shoulder Roll and Hip Roll at Different Front Crawl Speeds in Different Level Swimmers |
指導教授: |
張家豪
Chang, Jia-Hao |
口試委員: |
張家豪
Chang, Jia-Hao 彭賢德 Peng, Hsien-Te 楊志鴻 Yang, Chich-Haung |
口試日期: | 2024/01/26 |
學位類別: |
碩士 Master |
系所名稱: |
體育與運動科學系 Department of Physical Education and Sport Sciences |
論文出版年: | 2024 |
畢業學年度: | 112 |
語文別: | 中文 |
論文頁數: | 37 |
中文關鍵詞: | 捷泳 、運動學 、軀幹側傾 、對稱性 、無線傳感器 |
英文關鍵詞: | Freestyle, Kinematics, Trunk Inclination, Symmetry, Wireless Sensors |
研究方法: | 實驗設計法 |
DOI URL: | http://doi.org/10.6345/NTNU202401332 |
論文種類: | 學術論文 |
相關次數: | 點閱:202 下載:5 |
分享至: |
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
目的:探討不同前進速度對軀幹側傾角度之影響,並瞭解在不同組別游泳速度與軀幹傾角的變化。方法:招募16位受過3年以上競技游泳訓練選手,依據50公尺捷泳最佳成績分為優秀與次優秀組。使用無線傳感器分別安裝於軀幹和手腕位置,擷取頻率設定 120 Hz。受試者依序進行自覺中等速度、給定速度、最大速度 50 公尺捷泳試驗。上肢傳感器用於辨識動作周期與計算划幅、划頻;軀幹傳感器對其縱軸角速度訊號進行積分求得軀幹側傾角度、角速度與扭轉數據。使用二因子混和變異數分析,組內分析不同游泳速度差異,組間分析不同層級選手差異,並對運動學參數進行皮爾森相關分析。顯著水準採用 α=.05。結果:除上軀幹的非慣用側外,其餘側傾角均受前進速度與選手層級的交互作用影響。所有選手在最大速度時,上、下軀幹皆出現最小傾角,且與划手頻率呈高度負相關。此外,在相同的控制速度下,優秀選手展現出更大的上軀幹慣用側傾角和較低的划手頻率。結論:游泳選手透過減少上軀幹的傾角使划手頻率增加,並且核心肌群作用,降低下軀幹傾角,使動力鏈能夠更好的傳遞並維持划手頻率。主要效果檢定顯示,選手層級和游泳速度的交互作用影響傾角變化模式,但由於軀幹傾角與游泳秒數及划手頻率高度相關,不能作為衡量技術水平的唯一標準。
Purpose: To investigate the impact of different swimming speeds on trunk inclination angles and variations across skill levels. Methods: Sixteen competitive swimmers with over three years of training were categorized into elite and sub-elite groups based on their best 50-meter freestyle performance. Wireless sensors on the trunk and wrists, capturing data at 120 Hz, recorded motion cycles and stroke frequency during trials at moderate, controlled, and maximum speeds. Trunk sensors measured roll angles and trunk twist angles. A two-factor mixed-design ANOVA analyzed intra-group speed differences and inter-group skill variations, with Pearson correlation for kinematic parameters. The significance level was set at α = .05. Results: Except for the non-dominant side of the upper trunk, the other lateral roll angles are influenced by the interaction between forward speed and swimmer level. At maximum speed, all swimmers exhibit the smallest roll angles in both the upper and lower trunk, which are highly negatively correlated with stroke frequency. Additionally, at the same controlled speed, elite swimmers demonstrate a greater dominant side roll angle of the upper trunk and a lower stroke frequency. Conclusion: Swimmers can increase their stroke frequency by reducing the tilt angle of the upper trunk. The engagement of the core muscles reduces the tilt angle of the lower trunk, allowing for better transmission and maintenance of the stroke frequency within the kinetic chain. Main effect tests indicate that the interaction between swimmer level and swimming speed influences the tilt angle variation pattern. However, due to the high correlation between trunk tilt angles, swimming times, and stroke frequency, these angles cannot be used as the sole standard for assessing skill level.
胡程鈞、蕭新榮、湯文慈(2011)。身體滾轉對自由式游泳運動表現之影響。大專體育,113,42-48。https://doi.org/10.6162/SRR.2011.113.07
劉康田、張淳皓、孟範武、何金山(2013)。影像分析與慣性裝置運用於游泳划手動作分析之探討。嘉大體育健康休閒期刊,12(3),310-316。https://doi.org/10.6169/NCYUJPEHR.12.3.30
Andersen, J. T., Sinclair, P. J., McCabe, C. B., & Sanders, R. H. (2020). Kinematic Differences in Shoulder Roll and Hip Roll at Different Front Crawl Speeds in National Level Swimmers. Journal of strength and conditioning research, 34(1), 20–25. https://doi.org/10.1519/JSC.0000000000003281
Andersen, J., Sinclair, P., Fernandes, R. J., Vilas-Boas, J. P., & Sanders, R. (2023). Is torso twist production the primary role of the torso muscles in front crawl swimming? Sports biomechanics, 22(12), 1602–1616. https://doi.org/10.1080/14763141.2021.1925334
Arellano, R., Lopez-Contreras, G., & Sanchez-Molina, J. A. (2003). Qualitative evaluation of technique in international Spanish junior and pre-junior swimmers: An analysis of error frequencies. In J. C. Chatard (Ed.), Biomechanics and medicine in swimming IX (pp. 87–92). St Etienne: University of St Etienne Publications
Barden, J. M., & Barber, M. V. (2022). The Effect of Breathing Laterality on Hip Roll Kinematics in Submaximal Front Crawl Swimming. Sensors (Basel, Switzerland), 22(6), 2324. https://doi.org/10.3390/s22062324
Cappaert, J.M., Pease, D.L., & Troup, J.P. (1995). Three-Dimensional Analysis of the Men's 100-m Freestyle During the 1992 Olympic Games. Journal of Applied Biomechanics, 11(1), 103-112. https://doi.org/10.1123/jab.11.1.103
Castro, F.S., Villas-Boas, J.P., & Guimarães, A.C. (2007). Effects of swimming intensity and breathing in front crawl body roll angles for swimmers and triathletes. Brazilian Journal of Biomechanics, 7(13), 85-90.
Chatard, J. C. (Ed.). (2003). Biomechanics and Medicine in Swimming IX: Proceedings of the IXth World Symposium on Biomechanics and Medicine in Swimming. University of Saint-Etienne.
Chollet, D., Chalies, S., & Chatard, J. C. (2000). A new index of coordination for the crawl: description and usefulness. International journal of sports medicine, 21(1), 54–59. https://doi.org/10.1055/s-2000-8855
Chollet, D., Pelayo, P., Delaplace, C., Tourny, C., & Sidney, M. (1997). Stroking characteristic variations in the 100-M freestyle for male swimmers of differing skill. Perceptual and motor skills, 85(1), 167–177. https://doi.org/10.2466/pms.1997.85.1.167
Counsilman, J.E. (1968). The science of swimming. Prentice Hall.
Daukantas, S., Marozas, V., Lukosevicius, A., Jegelevicius, D., & Kybartas, D. (2011, September 15-17). Video and inertial sensors based estimation of kinematical parameters in swimming sport. In Proceedings of the 6th IEEE International Conference on Intelligent Data Acquisition and Advanced Computing Systems. Prague, Czech Republic. https://doi.org/10.1109/IDAACS.2011.6072785
Félix, E. R., Silva, H. P. D., Olstad, B. H., Cabri, J., & Correia, P. L. (2019). SwimBIT: A Novel Approach to Stroke Analysis During Swim Training Based on Attitude and Heading Reference System (AHRS). Sports (Basel, Switzerland), 7(11), 238. https://doi.org/10.3390/sports7110238
Gatta, G., Cortesi, M., & Di Michele, R. (2012). Power production of the lower limbs in flutter-kick swimming. Sports biomechanics, 11(4), 480–491. https://doi.org/10.1080/14763141.2012.670663
Kudo, S., Mastuda, Y., Yanai, T., & Sakurai, Y. (2021). Forwards-backwards hand velocity induced by the upper trunk rotation in front crawl strokes and its association with the stroke frequency. Journal of sports sciences, 39(15), 1669–1676. https://doi.org/10.1080/02640414.2021.1892266
Kudo, S., Sakurai, Y., Miwa, T., & Matsuda, Y. (2017). Relationship between shoulder roll and hand propulsion in the front crawl stroke. Journal of sports sciences, 35(10), 945–952. https://doi.org/10.1080/02640414.2016.1206208
Kwok, W. Y., So, B. C. L., & Ng, S. M. S. (2023). Underwater Surface Electromyography for the Evaluation of Muscle Activity during Front Crawl Swimming: A Systematic Review. Journal of sports science & medicine, 22(1), 1–16. https://doi.org/10.52082/jssm.2023.1
Lee, J., Mellifont, R., Winstanley, J., & Burkett, B. (2008). Body roll in simulated freestyle swimming. International journal of sports medicine, 29(7), 569–573. https://doi.org/10.1055/s-2007-989285
Liu, Q., Hay, J. G., & Andrews, J. G. (1993). Body Roll and Handpath in Freestyle Swimming: An Experimental Study. Journal of Applied Biomechanics, 9(3), 238-253. Retrieved Jul 23, 2024, from https://doi.org/10.1123/jab.9.3.238
Martens, J., Daly, D., Deschamps, K., Fernandes, R. J., & Staes, F. (2015). Intra-Individual Variability of Surface Electromyography in Front Crawl Swimming. PloS one, 10(12), e0144998. https://doi.org/10.1371/journal.pone.0144998
Ohgi, Y. (2002, June). Microcomputer-based acceleration sensor device for sports biomechanics-stroke evaluation by using swimmer's wrist acceleration. [Poster presentation]. SENSORS, 2002 IEEE, Orlando, FL, USA. https://doi.org/10.1109/ICSENS.2002.1037188
Ohgi, Y., Ichikawa, H., Homma, M., & Miyaji, C. (2003). Stroke phase discrimination in breaststroke swimming using a tri-axial acceleration sensor device. Sports Engineering, 6(2), 113-123. https://doi.org/10.1007/BF02903532
Ohgi, Y., Yasumura, M., Ichikawa, H., & Miyaji, C. (2000). Analysis of stroke technique using acceleration sensor IC in freestyle swimming. The engineering of sport: Research, development and innovation, 250, 503-511.
Pansiot, J., Lo, B., & Yang, G. Z. (2010, June). Swimming stroke kinematic analysis with BSN. In 2010 International Conference on Body Sensor Networks, Singapore. https://ieeexplore.ieee.org/document/5504746
Payton, C. J., Bartlett, R. M., Baltzopoulos, V., & Coombs, R. (1999). Upper extremity kinematics and body roll during preferred-side breathing and breath-holding front crawl swimming. Journal of sports sciences, 17(9), 689–696. https://doi.org/10.1080/026404199365551
Payton, C., Baltzopoulos, V., & Bartlett, R. (2002). Contributions of Rotations of the Trunk and Upper Extremity to Hand Velocity during Front Crawl Swimming. Journal of Applied Biomechanics, 18(3), 243-256. https://doi.org/10.1123/jab.18.3.243
Psycharakis, S. G., & Sanders, R. H. (2008). Shoulder and hip roll changes during 200-m front crawl swimming. Medicine and science in sports and exercise, 40(12), 2129–2136. https://doi.org/10.1249/MSS.0b013e31818160bc
Psycharakis, S. G., & Sanders, R. H. (2010). Body roll in swimming: a review. Journal of sports sciences, 28(3), 229–236. https://doi.org/10.1080/02640410903508847
Rouboa, A., Silva, A., Leal, L., Rocha, J., & Alves, F. (2006). The effect of swimmer's hand/forearm acceleration on propulsive forces generation using computational fluid dynamics. Journal of biomechanics, 39(7), 1239–1248. https://doi.org/10.1016/j.jbiomech.2005.03.012
Sanders, R. H., & Psycharakis, S. G. (2009). Rolling rhythms in front crawl swimming with six-beat kick. Journal of biomechanics, 42(3), 273–279. https://doi.org/10.1016/j.jbiomech.2008.10.037
Seifert, L., Toussaint, H. M., Alberty, M., Schnitzler, C., & Chollet, D. (2010). Arm coordination, power, and swim efficiency in national and regional front crawl swimmers. Human movement science, 29(3), 426–439. https://doi.org/10.1016/j.humov.2009.11.003
Toussaint, H., & Truijens, M. (2005). Biomechanical aspects of peak performance in human swimming. Animal Biology, 55(1), 17-40. https://doi.org/10.1163/1570756053276907
Vila Dieguez, O., & Barden, J. M. (2022). Body roll differences in freestyle swimming between swimmers with and without shoulder pain. Sports biomechanics, 21(10), 1277–1290. https://doi.org/10.1080/14763141.2020.1760923
Yanai T. (2003). Stroke frequency in front crawl: its mechanical link to the fluid forces required in non-propulsive directions. Journal of biomechanics, 36(1), 53–62. https://doi.org/10.1016/s0021-9290(02)00299-3
Yanai, T., & Hay, J. G. (2000). Shoulder impingement in front-crawl swimming: II. Analysis of stroking technique. Medicine and science in sports and exercise, 32(1), 30–40. https://doi.org/10.1097/00005768-200001000-00006
Yanai, T., & Hay, J. G. (2000). Shoulder impingement in front-crawl swimming: II. Analysis of stroking technique. Medicine and science in sports and exercise, 32(1), 30–40. https://doi.org/10.1097/00005768-200001000-00006