簡易檢索 / 詳目顯示

研究生: 尹基勉
Yin, Chi-Mien
論文名稱: 「原子結構」概念之建構式教學研究
Constructivist Instruction Research of "Atomic Structure" Conceptions
指導教授: 楊永華
Yang, Yong-Hwa
學位類別: 碩士
Master
系所名稱: 化學系
Department of Chemistry
畢業學年度: 87
語文別: 中文
論文頁數: 122
中文關鍵詞: 建構主義「原子結構」的建構式教學活動另有概念行動研究法
英文關鍵詞: Constructivism, Constructivist Instruction Activity of "Atomic Structure", Alternatuve Conceptions, Action Research
論文種類: 學術論文
相關次數: 點閱:193下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本研究透過建構式教學活動,將科學史融入教材中,以問題導向學習與合作學習等方式進行思考與討論,協助學生瞭解「原子結構」概念。
    首先建立以「原子」為主題的科學史架構,內容包括原子學說的發展史、現代原子學說與週期表之演進等三大部份。再根據高中化學課程,加入學生應學習的相關概念,輔以問題設計,引導學生主動思考與探究科學問題,並配合教學策略與教學媒體的運用,開發成為整個建構式教學活動的流程。
    為驗證本建構式教學活動的價值與可行性,以立意取樣方式選取高三學生191名為研究樣本,分為實驗組一班,控制組四班,進行實徵研究。第一部分以行動研究法,對實驗組學生進行建構式教學,分析學生在學習過程中的概念改變。第二部分以準實驗研究法,比較建構式教學與傳統式教學對學生學習之影響。第三部分則分析學生對於原子結構常有之另有概念,提供教師從事教學活動時之參考。
    實徵研究結果顯示,活動過程中多數的學生均表現出高度的學習興趣,能主動思考,並與同學或教師相互討論及磋商,進而建構屬於自己的知識。在概念學習方面,學生對於原子的抽象性概念較難理解,學生的概念要發生改變也並非一蹴可幾。最後,發現進行建構式教學的學生的學習成就均顯著地高於傳統式教學的學生,顯示本研究融合原子發展史與探索式教學的建構式教學模式設計,能有效地促進學生的學習與概念改變。

    The objectivity of this study is to promote students' understanding of "atomic structure" conceptions through constructivist teaching activities which introduces the history of science into the contents of the course. The manner of problem-oriented and cooperative learning was used to accomplish active thinking and discussion.
    First, the history of science on the "atom" topics was established, it had three major parts: the history of atomism, modern atomic theory, and the evolution of periodic table. The constructivist teaching activities was developed according to high school chemistry curriculum which identify the conceptions students should learn, problem-design to help students' active thinking and inquirying for scientific problems, and uses of teaching strategies and teaching media.
    Empirical research was carried out in order to prove the value and viability of this activity. 191 senior high school students were selected with purposeful sampling, among which one class is experimental group and the other four are control group. The first study used action research to analyze students' conceptual change during the learning process. The second study took quasi-experimental design to see how constructivist teaching influenced students' learning. The third study was to analyze students' alternative conceptions of atomic structure, it can provide teachers some guides for their teaching practices.
    Results from empirical research showed that most students enjoyed the activity. They thought and participated in the activity, discussed and negotiated with each other and the teacher to construct their own knowledge. In the phase of concept learning, students had difficulty in understanding abstract atomic conceptions. It's not so simple for them to change their concepts. Finally, students in the constructivist classroom learned better than students in the traditional classroom. It is shown that the constructivist teaching model on the basis of atomic history and inquiry teaching is useful to promote students' learning and conceptual change.

    目 錄 頁次 摘要‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧ I 英文摘要‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧II 目錄 ‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧III 表目錄‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧ V 圖目錄‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧ VII 第一章 緒論 第一節 研究背景‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧1 第二節 研究動機與目的‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧4 第三節 研究限制‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧6 第四節 名詞詮釋‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧7 第二章 基礎理論與文獻探討 第一節 建構主義的學習觀‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧8 第二節 建構主義的教學理念與實務 ‧‧‧‧‧‧‧‧‧‧11 第三節 概念改變:概念的形成與發展 ‧‧‧‧‧‧‧‧‧16 第四節 科學史在科學教學上的意義與應用 ‧‧‧‧‧‧‧23 第五節 「原子結構」概念之相關研究 ‧‧‧‧‧‧‧‧‧26 第三章 研究方法與步驟 第一節 研究架構 ‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧29 第二節 研究樣本 ‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧31 第三節 原子結構的建構式教學活動之設計與開發 ‧‧‧‧32 第四節 研究步驟 ‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧37 第五節 資料的收集與處理 ‧‧‧‧‧‧‧‧‧‧‧‧‧ 40 第四章 資料分析與結果 第一節 「原子結構」前測的定性分析結果 ‧‧‧‧‧‧ 42 第二節 「原子結構」的建構式教學活動 ‧‧‧‧‧‧‧ 47 第三節 「原子結構」後測的定性分析結果 ‧‧‧‧‧‧ 50 第四節 「原子結構」前測與後測的統計分析結果 ‧‧‧‧68 第五節 綜合討論 ‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧77 第五章 結論與建議 第一節 結論 ‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧81 第二節 建議 ‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧ 82 參考文獻 中文部分 ‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧ 84 英文部分 ‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧ 86 附錄 附錄一 原子結構的前測試題 ‧‧‧‧‧‧‧‧‧‧‧‧‧96 附錄二 原子結構的建構式活動教材 ‧‧‧‧‧‧‧‧‧‧ 98 附錄三 原子結構的後測試題 ‧‧‧‧‧‧‧‧‧‧‧‧‧116

    王德勝、朱天娥(民81)。化學五千年。台北:曉園出版社。
    江新合(民81)。建構主義式教學策略在國小自然科教學的應用模式,刊
    於屏東師院主辦,國小自然科學教育學術研討會,頁3-20。
    李遠哲(民85)。新世紀的教育方向。教改通訊,第24期,頁2。
    林清山(民83)。心理與教育統計學。台北市:東華書局。
    林陳涌(民85)。「了解科學本質量表」之發展與效化。科學教育學刊,
    4(1),頁1-58。
    邱美虹(民83)。科學課程革新─評介Project 2061, SS & C, STS理念。
    科學教育月刊,第174期,頁2-14。
    許良榮、李田英(民84)。科學史在科學教學的角色與功能。科學教育月
    刊,第179期,頁15-27。
    許榮富、楊文金、洪振方(民79)。學習環的理論基礎及其內涵分析─物
    理概念教學理念的新構思。物理會刊,第5期,頁375-398。
    郭生玉(民85)。心理與教育研究法,第十三版。中和市:精華書局。
    郭重吉(民77)。從認知的觀點探討自然科學的學習。教育學院學報,第
    13期。
    郭重吉、許玫理(民81)。從科學哲學的演變探討科學教育的過去與未來。
    彰化師大學報,第三期,頁531-561。
    國立編譯館(民85)。高級中學化學第三冊。台北:國立編譯館。
    國立編譯館(民85)。高級中學化學教師手冊第三冊。台北:國立編譯館。
    董有蘭 (民75)。電與電子。國立臺灣師範大學科學教育中心編印。
    董有蘭 (民77)。週期表與元素。國立臺灣師範大學科學教育中心編印。
    鄭湧涇、周雪美、張麗珠 (民78)。職前與在職生物教師對科學本質的了
    解。中華民國第四屆科學教育學術研討會論文彙編,國科會。
    歐陽教 (民78)。教學的觀念分析,頁1-27,黃光雄主編,教學原理,增
    訂二版。台北市:師大書苑。
    蘭宜申譯 (民80)。原子科學史(利納‧德弗里斯原著)。台北縣:藝文印
    書館。
    物質與結構的探索 (民80)。新竹市:凡異出版社。
    基本粒子的對話 (民77)。新竹市:凡異出版社。

    Abimbola, I.O. (1983). The relevance of the "new" philosophy
    of science for the science curriculum. School Science and
    Mathematics, 83(3), 181-192.
    Abraham, M.R., Williamson, V.M., & Westbrook, S.L. (1994). A
    cross age study of the understanding of five chemistry con-
    cepts.Journal of Research in Science Teaching, 31(2), 147-165.
    Airasian, P.W., & Walsh, M.E. (1997). Constructivist cautions.
    Phi Delta Kappan, 78, 444-449.
    Andersson, B. (1986). Pupils' explanation of some aspects of
    chemical reactions. Science Education, 70(5), 549-563.
    Appleton, K. (1989). A learning model for science education.
    Research in Science Education, 19, 13-24.
    Bent, H.A. (1977). Uses of history in teaching chemistry.
    Journal of chemical education, 54, 462-466.
    Blanco, R., & Niaz, M. (1998). Baroque tower on a gothic base:
    A Lakatosian reconstruction of students' and teachers'
    understanding of structure of the atom. Science and
    Education. 7, 327-360.
    Bliss, J. (1995). Piaget and after: The case of learning
    science. Studies in Science Education, 25, 139-172.
    Brackenridge, J. B. (1989). Education in science, history on
    science, and the textbook-necessary vs. sufficient
    conditions. Interchange, 20(2), 71-80.
    Bradley, J. (1984). History and the teaching of chemistry to
    the beginner. Education in Chemistry, 21, 12-14.
    Brooks, J. G. & Brooks, M. G. (1993). In search of
    understanding : The case for constructivist classrooms.
    Alexandria, VA: Association for Supervision and Curriculum
    Development.
    Burbules, N., & Linn, M. C. (1991). Science education and
    philosophy of science: Congruence or contradiction ?
    International Journal of Science Education, 13, 227-241.
    Carey, S. (1985). Conceptual change in children. Cambridge, MA:
    MIT Press.
    Carey, S., & Smith, C. (1993). On understanding the nature of
    scientific knowledge. Educational Psychologist,28(3), 235-251.
    Chi, M. T. H. (1992). Conceptual change within and across
    ontological categories: Examples from learning and discovery
    in science. Cognitive models of science : Minnesota studies
    in the philosophy of science, 129-160. Minneapolis, MN:
    University of Minnesota Press.
    Chi, M. T. H., Slotta, J. D., & deLeeuw, N. (1994). From things
    to Processes : A theory of conceptual change for learning
    science concepts. Learning and Instruction, 4, 27-43.
    Chiappetta, E. L., Sethna, G. H., & Dillman, D. A. (1991). A
    quantative analysis of high school chemistry textbooks for
    scientific literacy themes and expository learning aids.
    Journal of Research in Science Teaching, 28(10), 939-951.
    Claxton,G.(1990). Teaching to learn : A direction for
    education. London :Cassell.
    Confrey, J. (1989). A review of the research on student
    conceptions in mathematics, science, and programming. Review
    of Research in Education, 16, 3.
    de Berg, K. C. (1989). The emergence of quantification in the
    pressure-volume relationship for gases : A textbook analysis.
    Science Education, 73(2), 115-134.
    Driver, R., & Bell, B. (1986). Students' thinking and the
    learning of science : A constructivist view. School Science
    and Mathematics, 86(3), 443-456.
    Driver, R., & Easley, J. (1978). Pupils and paradigms: A review
    of literature related to concept development in adolescent
    science studies. Studies in Science Education, 5, 61-84.
    Driver, R., & Oldham, V. (1986). A constrictivist approach to
    curriculum development. Studies in Science Education, 13, 107-
    112.
    Driver, R., Asoko, H., Leach, J., Mortimer, E., & Scott, P.
    (1994). Constructing scientific knowledge in the classroom.
    Educational Researcher (October), 5-12.
    Duit, R. (1995). Consrtaints on knowledge acquisition and
    conceptual change: The case of physics. Paper presented at
    the 6th European Conference for Research on Learning and
    Instruction, Nijmegen, The Netherlands.
    Duschl, R. A. (1990). Restructuring science education: The
    importance of theories and their development. New York:
    Teacher College Press.
    Falconer, I. (1987). Corpuscles, electrons, and cathode rays:
    J.J. Thomson and the 'discovery of the electron'. British
    Journal for the History of Science, 20, 241-276.
    Gallagher, J. J. (1991). Prospective and practicing secondary
    school science teachers' knowledge and beliefs about the
    philosophy of science. Science Education, 75(1), 121-133.
    Garrison, J. W., & Lawwill, R. S. (1993). Democratic science
    teaching: A role for the history of science. Interchange, 24
    (1 & 2), 29-39.
    Gil, D., & Solbes, J. (1993). The introduction of modern
    physics: Overcoming a deformed vision of science. Inter-
    national Journal of Science Education, 15(3), 255-260.
    Gilbert, J., Osborne, R. & Fensham, P. (1982). Children's
    science and its consequences for teaching. Science Education,
    66, 623.
    Gunstone, R. F. & White, R. T. (1981). Understanding gravity.
    Science Education, 65, 291.
    Haidar, A. H., & Abraham, M. R. (1991). A comparison of applied
    and theoretical knowledge of concepts based on the
    particulate nature of matter. Journal of Research in Science
    Teaching, 28(10), 919-938.
    Hewson, P. W. (1985). Diagnosis and remediation of an
    alternative conception of velocity using a microcomputer
    program. American Journal of Physics, 53, 684-690.
    Hodson, D. (1988). Towards a philosophically more valid science
    curriculum. Science Education, 72, 19-40.
    Hodson, D. (1990). Making the implicit explicit: A curriculum
    planning model for enhancing children's understanding of
    science. In D.E. Herget (ed.),The History and Philosophy of
    Science in Science Teaching. Procedings of the first
    international conference, 292-310. Tallahassee: Florida State
    University.
    Jaworski, B. (1994). Investigating mathematics teaching.
    London: The Falmer Press.
    Kamsar, J. W. (1987). Utilizing a historical perspective in the
    teaching of chemistry. Journal of Chemical Education, 40, 656-
    665.
    Kauffman, G, B. (1991). History in the chemistry curriculum. In
    M.R. Matthews (ed.). History, Philosophy, and Science
    teaching: Selected Readings, 185-200. Toronto & New York :
    OISE Press, Teachers College Press.

    Kenealy, P. (1989). Telling a coherent "story": A role for the
    history and philosophy of science in a physical course. In D.
    E. Herget (ed.), The History and Philosophy of Science in
    Science Teaching. Procedings of the first international
    conference, 209-220. Tallahassee: Florida State University.
    Klopfer, L. E., & Waston, F. G. (1957). Historical materials
    and high school science teaching, The Science Teacher,
    October, 264-265, 292-293.
    Kuhn, T. S. (1970). The structure of scientific revolutions.
    Chicago: University of Chicago Press.
    Kuhn, T. S. (1984). Revisiting Planck. Historical Studies in
    the Physical Science, 14, 231-252.
    Lakatos, I. (1970). Falsification and the methodology of
    scientific research programmes. In I. Lakatos & A. Musgrave
    (Eds.), Criticism and the growth of knowledge (pp. 91-195).
    Cambridge, UK: Cambridge University Press.
    Lederman, N. G. (1992). Students' and teachers' conceptions of
    the nature of science : A review of the research. Journal of
    Research in Science Teaching, 29(4), 331-359.
    Lochhead, J., & Dufresne, R. (1989). Helping students
    understand difficult science concepts through the use of
    dialogues with history. In D.E.Herget(ed.), The History and
    Philosophy of Science in Science Teaching. Procedings of the
    first international conference, 221-229. Tallahassee: Florida
    State University.
    Meichtry, Y. (1993). The impact of science curricula on student
    views about the nature of science. Journal of Research in
    Science Teaching, 30(5), 429-443.
    Matthews, M. R. (1994). Science teaching: The role of history
    and philosophy of science. New York : Routledge.
    McDonald, D. (1989). Teaching science for understanding:
    Implications of spontaneous concepts and the history of
    science. ERIC: ED 314251.
    Millar, R., & Driver, R. (1987). Beyond processes. Studies in
    Science Education, 14, 33-62.
    Nersessian, N. (1991). Conceptual change in science and in
    science education. In M. R. Mathews (ed.). History,
    Philosophy, and Science teaching: Selected Readings, 133-140.
    Toronto & New York : OISE Press, Teachers College Press.
    Niaz, M. (1994). Enhancing thinking skills: Domain specific /
    domain general strategies─A dilemma for science education.
    Instructional Science, 22, 413-422.
    Niaz, M. (1998). From cathode rays to alpha particles to
    quantum of action: A reconstruction of structure of the atom
    and its implications for chemistry textbooks. Science
    Education, 82(5), 527-552.
    Novick, S., & Nussbaum, J. (1981). Pupils' understanding of the
    particulate nature of matter. A cross age study. Science
    Education, 65(2), 187-196.
    Nussbaum, J. (1983). Classroom conceptual change: The lesson to
    be learned from the history of science. In H. Hlem & J. D.
    Novak (eds.), Misconceptions in Science & Mathematics, 272-
    281. Cornell University, Department of Education.
    Oldroyd, D. R. (1977). Teaching the history of chemistry in New
    South Wales secondary schools.The Australian Science Teachers
    Journal, 23(2), 9-22.
    Pella, M. O. (1966). Concept learning in science. The Science
    Teacher, 33(1), 31.
    Pearsall, N. R., Skipper, J. E., & Minizes, J. J. (1997).
    Knowledge restructuring in the life of science: A Longi-
    tudinal study of conceptual change in Biology. Science
    Education, 81, 193.
    Piaget, J. (1978). The development of thought (A.Rosin,Trans.).
    Oxford: Basil Blackwell.
    Pintrich, P. R., Marx, R. W.,& Boyle, R. A. (1993). Beyond cold
    conceptual change: The role of motivational beliefs and
    classroom contextual factors in the process of conceptual
    change. Review of Educational Research, 63, 167-200.
    Popper, K. (1965). Conjectures and refutations: The growth of
    scientific knowledge. New York: Harper.
    Posner, G. J., Strike, K. A., Hewson, P. W., & Gertzog, W. A.
    (1982). Accommodation of a scientific conception: Toward a
    theory of conceptual change. Science Education, 66, 211.
    Roth, K. J. (1991). Reading science texts for conceptual
    change. In C. M. Santa & D. E. Alvermann (Eds.), Science
    Learning: Processes and applications, 48-63, International
    Reading Association.
    Rumelhard, D. E. & Norman, D. A. (1981). Accretion, tuning and
    restructuring: Three modes of learning. Semantic factors
    in cognition. Hillsdale, NJ: Lawrence Erlbaum Associates.
    Saunders, W. L. (1992). The constructivist perspective:
    Implications and teaching strategies for science. School
    Science and Mathematics, 92(3), 136-141.
    Schecker, H. P. (1992). The paradigmatic change in mechanics:
    Implication of historical processes for physics education.
    Science and Education, 1(1), 71-76.
    Scott, P., Dyson, T. & Gater, S. (1989). A constructivist view
    of learning and teaching in science. ERIC:ED 287706.
    SPACE (1990-1994). Research Reports. Liverpool UniversityPress.
    Shymansky, J. A. (1992). Using constructivist ideas to teach
    science teachers about constructivist ideas, or teachers are
    students too!Journal of Science Teacher Education,3(2),53-57.
    Shymansky, J. A., Woodworth, G., Norman, O., Dunkhase, J.,
    Matthews, C., & Liu, C. T. (1993). A study of changes in
    middle school teachers' understanding of selected ideas in
    science as a function of an inservice program focusing on
    student preconceptions. Journal of Research in Science
    Teaching, 30, 737-755.
    Stinner, A., & Williams, H. (1993). Conceptual change, history, and science stories. Interchange, 24(1 & 2), 87-103.
    Tyson, L. M., Venville, G. J., Harrison, A. G., & Treagust, D.
    F. (1997). A Multidimensional framework for interpreting
    conceptual change events in the classroom. Science Education,
    81(4), 387-404.
    von Glasersfeld, E. (1989). Cognition, construction of
    knowledge, and teaching. Synthese, 80(1), 120-141.
    Wheatley, G. H. (1991). Constructivist perspectives on science
    and mathematics learning, Science Education, 75(1).
    Vosniadou, S., & Brewer, W. F. (1987). Theories of knowledge
    restructuring in development. Review of Educational Research,
    57, 51-67.
    Yager, R. E. (1991). The constructivist learning model: Towards
    real reform in science education. The Science Teacher, 58(6),
    52-57.

    無法下載圖示
    QR CODE