簡易檢索 / 詳目顯示

研究生: 馬達南
Magar Dhananjay Ravindra
論文名稱: 以吡咯啶-樟腦衍生之有機催化劑應用於活化烯類及酮類的Michael加成反應
Pyrrolidine-camphor derived organocatalyst for the Michael addition of ketones to the activated olefins
指導教授: 陳焜銘
Chen, Kwun-Min
學位類別: 博士
Doctor
系所名稱: 化學系
Department of Chemistry
論文出版年: 2012
畢業學年度: 100
語文別: 英文
論文頁數: 98
中文關鍵詞: 不對稱合成有機催化動力學分割Michael加成反應Chromenes
英文關鍵詞: Asymmetric synthesis, Organocatalysis, Kinetic resolution, Michael addition, Chromenes
論文種類: 學術論文
相關次數: 點閱:212下載:1
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本論文主要探討酮類化合物及不同烯類之有機催化Michael加成反應,以吡咯啶-樟腦衍生之有機催化劑進行反應,得到具有高產率及高立體選擇性之Michael加成產物,內容共分成三部分予以探討。
    第一章:不對稱合成之簡介
    此章節介紹了掌性的概念,及文獻中以不對稱合成方法製備掌性分子的整理,其中針對不同類型及活化方式的有機催化發展做深入的探討。
    第二章:酮類化合物對alkylidene malonates的Michael加成反應
    本實驗中,以吡咯啶-樟腦衍生之有機催化劑,有效進行酮類化合物對alkylidene malonates的Michael加成反應,得到相對應的Michael加成產物,有高達95%的產率,非鏡像選擇性大於99% de,及最高96% ee的鏡像選擇性;生成的Michael加成產物亦可藉由化學反應,轉換成掌性的內酯,且不影響其立體選擇性。
    第三章:藉由Michael加成反應進行3-nitro-2H-chromene的光學分割
    以吡咯啶-樟腦之衍生物,做為雙功能有機催化劑,醋酸為添加劑,在無溶劑、0 oC的反應條件下,進行外消旋之2-aryl-3-nitro-2H-chromene的光學分割。大致上,酮類化合物與外消旋之2-aryl-3-nitro-2H-chromene的Michael加成反應,均可順利得到高產率及高立體選擇性的Michael加成產物(最高產率47%,非鏡像比例92:8,93% ee);而經由光學分割後,回收之起始物chromene也有高達42%的產率及72% ee的鏡像選擇性。

    The research work presented in this dissertation is highlighting the organocatalysed Michael addition reactions of ketones to various electron deficient activated olefins. The pyrrolidinyl-camphor derived catalysts were shown good results in the Michael addition reactions in terms of chemical yield and stereoselectivities of the Michael adducts. Thesis is divided into three chapters as mentioned below.
    Chapter 1. General Introduction: Asymmetric synthesis
    This chapter deals with the origin and importance of “chirality” in nature and human life. Brief introduction towards asymmetric synthesis of chiral molecules and their importance in pharmaceutics. The development and classification of organocatalysis.
    Chapter 2. Asymmetric Michael addition of ketones to alkylidene malonates.

    In this part we have been developed the enantioselective Michael addition of ketones to the alkylidene/arylidene malonates. Pyrrolidine-camphor derivative (39e) was found to be efficient catalyst for the enantioselective conjugate addition of ketones to the alkylidene malonates to give the corresponding products (36a-n and 40b-g) in high yields ( up to 95%) with high diastereo-selectivities (up to >99) and enantioselectivities (up to 96%). The Michael adducts obtained can be easily transformed into the chiral lactones (41a) without any discrimination in stereoselectivities.
    Chapter 3. Kinetic resolution of 3-nitro-2H-chromenes via organocatalysed Michael addition.
    Kinetic resolution of racemic 2-aryl-3-nitro-2H-chromenes (56a-l) has been explored with the pyrrolidinyl-camphor derivative 57b as a bifunctional organocatalyst under neat conditions in the presence of AcOH at 0 oC. In general, the organocatalytic asymmetric Michael addition of ketones proceeded smoothly to give the functionalized Michael adducts (58a-n) with good to high diastereo- and enantioselectivities (up to 92:8 dr, 93% ee, and 47% yield). The less reactive chromenes (S)-56a-h, k, l and (R)-56i-j were recovered in high chemical yields and moderate optical purity (up to 42 % chemical yield and 72% ee).

    Contents Abstract…………………………………………………………………………………………………………………………………i Contents…………………………………………………………………………………………………………………………iv Abbreviations………………………………………………………………………………………………………………………v 1. General Introduction……………………………………………………………………………………………………..1 1.1. Chirality……………………………………………………………………………………………………………………1 1.2. Asymmetric organocatalysis…………………………………………………………………………………….2 1.3. Covalent catalysis……………………………………………………………………………………………………5 1.3.1. Amine catalysis……………………………………………………………………………………………..6 1.3.2. Nucleophilic catalysis…………………………………………………………………………………..13 1.4. Non-covalent catalysis………………………………………………………………………………………….14 1.4.1. Hydrogen bonding catalysis………………………………………………………………………..14 1.4.2. Phase transfer catalysis……………………………………………………………………………….15 1.5. Bifunctional catalysis…………………………………………………………………………………………….16 1.6. References……………………………………………………………………………………………………………16 2. Asymmetric Michael addition of ketones to the alkylidene malonates……………………..21 2.1. Introduction: Michael addition……………………………………………………………………………..21 2.2. Results and discussion………………………………………………………………………………………….28 2.3. Conclusions…………………………………………………………………………………………………………..35 2.4. Experimental section…………………………………………………………………………………………….35 2.5. References…………………………………………………………………………………………………………….51 3. Kinetic resolution of racemic 2-aryl-3-Nitro-2H-chromenes Via organocatalysed Michael addition………….………………………………………………………………..55 3.1. Introduction…………………………………………………………………………………………………………55 3.1.1. Kinetic resolution………………………………………………………………………………………55 3.1.2. Chiral chromenes and chromans……………………………………………………………….61 3.2. Results and discussion………………………………………………………………………………………….64 3.3. Conclusions…………………………………………………………………………………………………………..72 3.4. Experimental section………………………………………………………………..…………………………..72 3.5. References…………………………………………………………………………………………………………….95

    1. L. Kelvin; Baltimore Lectures on Molecular Dynamics and the Wave Theory of Light, 1904, C. J. Clay and Sons, Cambridge University Press Warehouse, London.
    2. a) E. L. Eliel, S. H. Wilen, Stereochemistry of Organic Compounds, 1994, Wiley, New York; b) J. H. van't Hoff, Bull. soc. chim. France, 1875, 23, 295; c) J. A. Le Bel, Bull. soc. chim. France, 1874, 22, 337.
    3. a) G. T. Tucker, M. S. Lennard, Enantiomer specific pharmacokinetics. Pharmacol. Ther. 1990, 45, 309; b) R. L. Nation, Chirality in new drug development Clinical pharmacokinet considerations, ClinPharmacokinet 1994, 27, 249; c) M. R. Islam, J. C. Mahdi, I. D. Bowen, Pharmacological importance of stereochemical resolution of enantiomeric drugs, Drug Safety 1997, 17, 149.
    4. a) P. F. White, J. Ham, W. L. Way, A. J. Trevor, Anesthesiology 1980, 52, 231; b) J. Schuttler, D. R. Stanski, P. F. White, A. J. Trevor, Y. Horai, D. Verotta, L. B. Sheiner J. Pharmacokinet. Biopharm, 1987, 15, 241; c) K. M. Rentsch, The importance of stereoselective determination of drugs in the clinical laboratory, J. Biochemical and Biophysical Methods, 2002, 54(1-3), 1.
    5. a) Asymmetric Organocatalysis: From Biomimetic Concepts to Applications in Asymmetric Synthesis; A. Berkessel, H. Gröger, Eds.; Wiley-VCH: Weinheim, 2005; b) Enantioselective Organoctalysis; P. I. Dalko, Eds.; Wiley-VCH, Weinheim, 2007.
    6. a) H. Pracejus Justus Liebis Ann. Chem. 1960, 634, 9; b) H. Pracejus, H. Mätje, J. Prakt. Chem. 1964, 24, 195.
    7. a) U. Eder, G. Sauer, R. Wiechert, Angew. Chem., Int. Ed. Engl., 1971, 10, 496; b) Z. G. Hajos, D. R. Parrish, J. Org. Chem. 1974, 39, 1615.
    8. B. List, R. A. Lerner, C. F. Barbas III, J. Am. Chem. Soc. 2000, 122, 2395.
    9. K. A. Ahrendt, C. J. Borths, D.W. C. MacMillan, J. Am. Chem. Soc. 2000, 122, 4243.
    10. For selected reviews on organocatalysis, see: a) S. Mukherjee, J. W. Yang, S. Hoffmann, B. List, Chem. Rev. 2007, 107, 5471; b) H. Pellissier, Tetrahedron 2007, 63, 9267; c) A. Dondoni, A. Massi, Angew. Chem., Int. Ed. 2008, 47, 4638.
    11. D. W. C. MacMillan, Nature 2008, 455, 304.
    12. Reviews: a) Acc. Chem. Res. 2004, 37, 487 (Eds.: K. N. Houk, B. List); b) Tetrahedron 2006, 62, 255 (Eds.: P. Kocovsky, A. V. Malkov); c) A. Dondoni, A. Massi, Angew. Chem., Int. Ed. 2008, 47, 4638; d) C. F. Barbas III, Angew. Chem. 2008, 120, 44; Angew. Chem., Int. Ed. 2008, 47, 42; e) P. I. Dalko and L Moisan, Angew. Chem., Int. Ed. 2004, 43, 5138; f) J. Gawronski, N. Wascinska, J. Gajewy, Chem. Rev., 2008, 108, 5227.
    13. a) P. Melchiorre, M. Marigo, A. Carlone, G. Bartoli, Angew. Chem., Int. Ed. 2008, 47, 6138; b) A. Erkkilä, I. Majander, P. M. Pihko, Chem. Rev. 2007, 107, 5416.
    14. a) S. Bertelsen, M. Marigo, S. Brandes, P. Dinér, K. A. Jørgensen, J. Am. Chem. Soc. 2006, 128, 12973; b) B.-C. Hong, M.-F. Wu, H.-C. Tseng, J.-H. Liao, Org. Lett. 2006, 8, 2217.
    15. a) H. Jang, J. Hong, D. W. C. MacMillan, J. Am. Chem. Soc. 2007, 129, 7004; b) M. P. Sibi, M. Hasegawa, J. Am. Chem. Soc. 2007, 129, 4124.
    16. a) Z.-J. Jia, H. Jiang, J.-L. Li, B. Gschwend, Q.-Z. Li, X. Yin, J. Grouleff, Y.-C. Chen, K. A. Jørgensen, J. Am. Chem. Soc. 2011, 133, 5053; b) Z.-J. Jia, Q. Zhou, Q.-Q. Zhou, P.-Q. Chen, Y.-C. Chen, Angew. Chem., Int. Ed. 2011, 50, 8638; c) X.-F. Xiong, Q. Zhou, J. Gu, L. Dong, T.-Y. Liu, Y.-C. Chen, Angew. Chem., Int. Ed. 2012, 51, 4401.
    17. C. Sparr, R. Gilmour, Angew. Chem., Int. Ed. 2011, 50, 8391.
    18. A. Cordova, W. Notz, G. Zhong, J. M. Betancort, C. F. Barbas, III, J. Am. Chem. Soc. 2002, 124, 1842.
    19. W. Notz, B. List, J. Am. Chem. Soc. 2000, 122, 7386.
    20. S. P. Brown, M. P. Brochu, C. J. Sinz, D. W. C. MacMillan, J. Am. Chem. Soc. 2003, 125, 10 808.
    21. a) B. List, J. Am. Chem. Soc. 2002, 124, 5656; b) N. Kumaragurubaran, K. Juhl, W. Zhuang, A. Bøgevig, K. A. Jørgensen, J. Am. Chem. Soc. 2002, 124, 6254.
    22. a) M. Marigo, T. C. Wabnitz, D. Fielenbach, K. A. Jørgensen, Angew.Chem., Int. Ed. 2005, 44, 794; b) Y. Hayashi, H. Gotoh, T. Hayashi, M. Shoji, Angew. Chem., Int. Ed. 2005, 44, 4212; c) Y. Hayashi, T. Itoh, S. Aratake, H. Ishikawa, Angew. Chem., Int. Ed. 2008, 47, 2082.
    23. Y. Hayashi, H. Gotoh, T. Hayashi, M. Shoji, Angew. Chem., Int. Ed. 2005, 44, 4212.
    24. M. Marigo, J. Franzén, T. B. Poulsen, W. Zhuang, K. A. Jørgensen, J. Am. Chem. Soc. 2005, 127, 6964.
    25. a) A. J. A. Cobb, D. M. Shaw, S. V. Ley, Synlett, 2004, 558; b) A. J. A. Cobb, D. M. Shaw, D. A. Longbottom, J. B. Gold, S. V. Ley, Org. Biomol. Chem. 2005, 3, 84.
    26. T. Kano, J. Takai, O. Tokuda, K. Maruoka, Angew. Chem., Int. Ed. 2005, 44, 3055.
    27. J.-W. Xie, W. Chen, R. Li, M. Zeng, W. Du, L. Yue, Y.-C. Chen, Y. Wu, J. Zhu, J.-G. Deng, Angew. Chem., Int. Ed. 2007, 46, 389.
    28. a) T. Kawabata, M. Nagato, K. Takasu, K. Fuji, J. Am. Chem. Soc. 1997, 119, 3169; b) T. Kawabata, K. Yamamoto, Y. Momose, H. Yoshida, Y. Nagaoka, K. Fuji, Chem. Commun. 2001, 2700.
    29. a) J. C. Ruble, G. C. Fu, J. Org. Chem. 1996, 61, 7230; b) C. E. Garrett, G. C. Fu, J. Am. Chem. Soc. 1998, 120, 7479; c) R. P. Wurz, E. C. Lee, J. C. Ruble, G. C. Fu, Adν. Synth. Catal. 2007, 349, 2345.
    30. Y. Y. Iwabuchi, M. Nakatani, N. Yokoyama, S. Hatakeyama, J. Am. Chem. Soc. 1999, 121, 10219.
    31. D. Enders, U. Kallfass, Angew. Chem. 2002, 114, 1822; Angew. Chem., Int. Ed. 2002, 41, 1743.
    32. V. K. Aggarwal, E. Alonso, G. Hynd, K. M. Lydon, M. J. Palmer, M. Porcelloni, J. R. Studley, Angew. Chem., Int. Ed. 2001, 40, 1430.
    33. S. E. Denmark, S. Ghosh, Angew. Chem., Int. Ed. 2001, 40, 4759.
    34. M. S. Sigman, E. N. Jacobsen, J. Am. Chem. Soc. 1998, 120, 4901.
    35. D. J. Guerin, S. J. Miller, J. Am. Chem. Soc. 2002, 124, 2134.
    36. Y. Huang, A. K. Unni, A. N. Thadani, V. H. Rawal, Nature 2003, 424, 146.
    37. N. T. McDougal, S. E. Schaus, J. Am. Chem. Soc. 2003, 125, 12094.
    38. T. Akiyama, J. Itoh, K. Yokota, K. Fuchibe, Angew. Chem., Int. Ed. 2004, 43, 1566.
    39. G. B. Rowland, H. Zhang, E. B. Rowland, S. Chennamadhavuni, Y. Wang, J. C. Antilla, J. Am. Chem. Soc. 2005, 127, 15696.
    40. D. Nakashima, H. Yamamoto, J. Am. Chem. Soc. 2006, 128, 9626.
    41. a) B. Lygo, P. G. Wainwright, Tetrahedron Lett. 1997, 38, 8595; b) E. J. Corey, F. Xu, M. C. Noe, J. Am. Chem. Soc. 1997, 119, 12414.
    42. T. Ooi, M. Kameda, K. Maruoka, J. Am. Chem. Soc. 1999, 121, 6519; b) T. Ooi, M. Kameda, K. Maruoka, J. Am. Chem. Soc. 2003, 125, 5139.
    43. L. Bernardi, F. Fini, M. Fochi, A. Ricci, Chimia 2007, 61, 224.
    44. H. Hiemstra, H. Wynberg, J. Am. Chem. Soc. 1981, 103, 417.
    45. T. Okino, Y. Hoashi, Y. Takemoto, J. Am. Chem. Soc. 2003, 125, 12672.
    46. B. Vakulya, S. Varga, A. Czámpai, T. Sóos, Org. Lett. 2005, 7, 1967.
    1. P. Perlmutter, Conjugate Addition Reactions in Organic Synthesis; Pergamon: Oxford, 1992.
    2. For reviews on organocatalytic asymmetric conjugate addition reactions, see: a) K. Tomioka, Y. Nagaoka, M. Yamaguchi, In Comprehensive Asymmetric Catalysis, Vol. III (Eds: E. N. Jacobsen, A. Pfaltz, H. Yamamoto), Springer: New York, 1999, pp. 1105; b) S. Sulzer-Mossé, A. Alexakis, Chem. Commun. 2007, 3123; c) J. L. Vicario, D. Badia, L. Carrillo, Synthesis 2007, 2065; d) S. B. Tsogoeva, Eur. J. Org. Chem. 2007, 1701; e) O. M. Berner, L. Tedeschi, D. Enders, Eur. J. Org. Chem. 2002, 1877; f) N. Krause, A. Hoffmann-Roder, Synthesis 2001, 171; g) D. Almasi, D. A. Alonso, C. Nájera, Tetrahedron: Asymmetry 2007, 18, 299.
    3. For Asymmetric Michael additions of aldehydes and ketones to nitroolefins, see: a) B. List, P. Pojarliev, H. J. Martin, Org. Lett. 2001, 3, 2423; b) J. M. Betancort, C. F. Barbas, III Org. Lett. 2001, 3, 3737; c) A. Alexakis, O. Andrey, Org. Lett. 2002, 4, 3611; d) T. Ishii, S. Fujioka, Y. Sekiguchi, H. Kotsuki, J. Am. Chem. Soc. 2004, 126, 9558; e) Y. Hayashi, H. Gotoh, T. Hayashi, M. Shoji, Angew. Chem., Int. Ed. 2005, 44, 4212; f) Y. Xu, W. Zou, H. Sundén, I. Ibrahem, A. Cordóva, Adv. Synth. Catal. 2006, 348, 418; g) S. Luo, X. Mi, L. Zhang, S. Liu, H. Xu, J.-P. Cheng, Angew. Chem., Int. Ed. 2006, 45, 3093; h) C. Palomo, S. Vera, A. Mielgo, E. Gómez-Bengoa, Angew. Chem., Int. Ed. 2006, 45, 5984; i) S. Mossé, M. Laars, K. Kriis, T. Kanger, A. Alexakis, Org. Lett. 2006, 8, 2559; j) S. V. Pansare, K. Pandya, J. Am. Chem. Soc. 2006, 128, 9624; k) C.-L. Cao, M.-C. Ye, X.-L. Sun, Y. Tang, Org. Lett. 2006, 8, 2901; l) E. Reyes, J. L. Vicario, D. Badía, L. Carrillo, Org. Lett. 2006, 8, 6135; m) Y. Xu, A. Cordóva, Chem. Commun. 2006, 460; n) T. Mandal, C.-G. Zhao, Tetrahedron Lett. 2007, 48, 5803; o) L.-q. Gu, G. Zhao, Adv. Synth. Catal. 2007, 349, 1629; p) B. Ni, Q. Zhang, A. D. Headley, Green Chem. 2007, 9, 737; q) Y. Chi, L. Guo, N. A. Kopf, S. H. Gellman, J. Am. Chem. Soc. 2008, 130, 5608; r) M. Wiesner, J. D. Revell, H. Wennemers, Angew. Chem., Int. Ed. 2008, 47, 1871; s) P. García-García, A. Ladépêche, R. Halder, B. List, Angew. Chem., Int. Ed. 2008, 47, 4719; t) D. Enders, C. Wang, J. W. Bats, Angew. Chem., Int. Ed. 2008, 47, 7539; u) M. Wiesner, J. D. Revell, S. Tonazzi, H. Wennemers, J. Am. Chem. Soc. 2008, 130, 5610; v) B. Tan, X. Zeng, Y. Lu, P. J. Chua, G. Zhong, Org. Lett. 2009, 11, 1927.
    4. Y.-Z. Liu, J. Zhang, P.-F. Xu, Y.-C. Luo, J. Org. Chem. 2011, 76, 7551.
    5. a) P. Melchiorre, K. A. Jørgensen, J. Org. Chem. 2003, 68, 4151; b) M. T. H. Fonseca, B. List, Angew. Chem., Int. Ed. 2004, 43, 3958; c) T. J. Peelen, Y. G. Chi, S. H. Gellman, J. Am. Chem. Soc. 2005, 127, 11598; d) J. Wang, H. Li, L. Zu, W. Wang, Adv. Synth. Catal. 2006, 348, 425.
    6. a) S. Mossé, A. Alexakis, Org. Lett. 2005, 7, 4361.
    7. G.-L. Zhao, Y. Xu, H. Sundén, L. Eriksson, M. Sayah, A. Córdova, Chem. Comm. 2007, 734.
    8. J. Alemán, S. Cabrera, E. Maerten, J. Overgaard, K. A. Jørgensen, Angew. Chem., 2007, 119, 5616; Angew. Chem., Int. Ed. 2007, 46, 5520.
    9. S. Sulzer-Mossé, M. Tissot, A. Alexakis, Org. Lett., 2007, 9, 3749; b) S. Sulzer-Mossé, A. Alexakis, J. Mareda, G. Bollot, G. Bernardinelli, Y. Filinchuk, Chem. Eur. J. 2009, 15, 3204.
    10. a) S. Brandau, A. Landa, J. Franzén, M. Marigo, K. A. Jørgensen, Angew. Chem., Int. Ed. 2006, 45, 4305.
    11. a) D. A. Evans, T. Rovis, M. C. Kozlowski, C. W. Downey, J. S. Tedrow, J. Am. Chem. Soc. 2000, 122, 9134; b) D. A. Evans, T. Rovis M. C. Kozlowski, J. S. Tedrow, J. Am. Chem. Soc. 1999, 121, 1994; c) W. Zhuang, T. Hansen, K. A. Jørgensen, Chem. Commun. 2001, 347; d) J. Zhou, Y. Tang, Chem. Commun. 2004, 432; e) J. Zhou, Y. Tang, J. Am. Chem. Soc. 2002, 124, 9030; f) R. Rasappan, M. Hager, A. Gissibl, O. Reiser, Org. Lett. 2006, 8, 6099; g) S. Yamazaki, Y. Iwata, J. Org. Chem. 2006, 71, 739.
    12. a) G.-L. Zhao, J. Vesely, J. Sun, K. E. Christensen, C. Bonneau, A. Córdova, Adv. Synth. Catal. 2008, 350, 657; b) L. Wen, Q. Shen, L. Lu Org. Lett., 2010, 12, 4655; c) R. Chowdhury, S. K. Ghosh, Org. Lett., 2009, 11, 3270; d) J. M. Betancort, K. Sakthivel, R. Thayumanavan, C. F. Barbas, III. Tetrahedron Lett, 2001, 42, 4441; e) J. M. Betancort, K. Sakthivel, R. Thayumanavan, F. Tanaka, C. F. Barbas, III. Synthesis, 2004, 1509; f) C.-L. Cao, X.-L. Sun, J.-L. Zhou, Y. Tang, J. Org. Chem. 2007, 72, 4073.
    13. J. Liu, Z. Yang, X. Liu, Z. Wang, Y. Liu, S. Bai, L. Lin, X. Feng, Org. Biomol. Chem., 2009, 7, 4120.
    14. a) C. Chang, S.-H. Li, R. J. Reddy, K. Chen, Adv. Synth. Catal. 2009, 351, 1273; b) R. J. Reddy, H.-H. Kuan, T.-Y. Chou, K. Chen, Chem. Eur. J. 2009, 15, 9294; c) Y.-F. Ting, C. Chang, R. J. Reddy, D. R. Magar, K. Chen, Chem. Eur. J. 2010, 16, 7030; d) Z.-H. Tzeng, H.-Y. Chen, R. J. Reddy, C.-T. Huang, K. Chen, Tetrahedron 2009, 65, 2879; e) Z-H. Tzeng, H.-Y. Chen, C.-T. Huang, K. Chen, Tetrahedron Lett. 2008, 49, 4134; f) P.-M. Liu, C. Chang, R. J. Reddy, Y.-F. Ting, H.-H. Kuan, K. Chen. Eur. J. Org. Chem. 2010, 42.
    1. For selected reviews on KR reaction, see: a) J. M. Keith, J. F. Larrow, E. N. Jacobsen, Adv. Synth. Catal. 2001, 343, 5; b) D. E. J. E. Robinson, S. D. Bull, Tetrahedron: Asymmetry 2003, 14, 1407; c) E. Vedejs, M. Jure, Angew. Chem., Int. Ed. 2005, 44, 3974; d) H. B. Kagan, J. C. Fiaud, Top. Stereochem. 1988, 18, 249 – 330; For special issue on kinetic resolution, e) E. L. Eliel, J. C. Fiaud, Eds.; Wiley: New York, 1988; Vol. 18, 249.
    2. G. P. Moss, Pure Appl. Chem. 1996, 68, 2193.
    3. M. L. Pasteur, C. R. Hebd. Seances Acad. Sci. 1858, 46, 615.
    4. E. Fischer, Ber. Dtsch. Chem. Ges. 1890, 23, 370.
    5. W. Marckwald, A. McKenzie, Ber. Dtsch. Chem. Ges. 1899, 32, 2130.
    6. V. S. Martin, S. S. Woodard, T. Katsuki, Y. Yamada, M. Ikeda, K. B. Sharpless, J. Am. Chem. Soc. 1981, 103, 6237.
    7. For selected references on metal-mediated kinetic resolution, see: a) J. P. Morken, M. T. Didiuk, M. S. Visser, A. H. Hoveyda, J. Am. Chem. Soc. 1994, 116, 3123; b) S. Ramdeehul, P. Dierkes, R. Aguado, P. C. J. Kamer, P. W. N. M. van Leeuwen, J. A. Osborn, Angew. Chem., Int. Ed. 1998, 37, 3118; c) K. Tanaka, G. C. Fu, J. Am.Chem. Soc. 2002, 124, 10296; d) B. J. Lüssem, H.-J. Gais, J. Am. Chem. Soc. 2003, 125, 6066; e) C. Fischer, C. Defieber, T. Suzuki, E. M. Carreira, J. Am. Chem. Soc. 2004, 126, 1628; f) F. O. Arp, G. C. Fu, J. Am. Chem. Soc. 2006, 128, 14264; g) X. L. Hou, B. H. Zheng, Org. Lett. 2009, 11, 1789.
    8. For selected O-acylation reactions, see: a) I. Shiina, K. Nakata, K. Ono, M. Sugimoto, A. Sekiguchi, Chem.‒ Eur. J. 2010, 16, 167; b) X. Li, P. Liu, K. N. Houk, V. B. Birman, J. Am. Chem. Soc. 2008, 130, 13836; c) V. B. Birman, L. Guo, Org. Lett. 2006, 8, 4859; d) S. J. Miller, G. T. Copeland, N. Papaioannou, T. E. Horstmann, E. M. Ruel, J. Am. Chem. Soc. 1998, 120, 1629; e) T. Kawabata, M. Nagato, K. Takasu, K. Fuji, J. Am. Chem. Soc. 1997, 119, 3169; For selected N-acylation reactions, see: f) S. Arseniyadis, A. Valleix, A. Wagner, C. Mioskowski, Angew. Chem., Int. Ed. 2004, 43, 3314; g) C. Kanta De, E. G. Klauber, D. Seidel, J. Am. Chem. Soc. 2009, 131, 17060.
    9. For selected catalytic silylation, see: a) Y. Zhao, A. W. Mitra, A. H. Hoveyda, M. L. Snapper, Angew. Chem., Int. Ed. 2007, 46, 8471; b) T. Isobe, K. Fukuda, Y. Araki, T. Ishikawa, Chem. Commun. 2001, 243.
    10. For other organocatalytic kinetic resolutions, see: a) A. Berkessel, F. Cleemann, S. Mukherjee, Angew. Chem., Int. Ed. 2005, 44, 7466; b) L. Chen, S. Luo, J. Li, X. Li, J.-P. Cheng, Org. Biomol. Chem. 2010, 8, 2627.
    11. a) J. Yu, W.-J. Chen, L.-Z. Gong, Org. Lett. 2010, 12, 4050; b) N. Shimada, B. O. Ashburn, A. K. Basak, W. F. Bow, D. A. Vicic, M. A. Tius, Chem. Commun. 2010, 46, 3774; c) A. Quintard, A. Alexakis, C. Mazet, Angew. Chem., Int. Ed. 2011, 50, 2354; d) P. G. McGarraugh, S. E. Brenner-Moyer, Org. Lett. 2011, 13, 6460.
    12. a) R. J. Reddy, K. Chen, Org. Lett. 2011, 13, 1458; b) R. J. Reddy, P.-H. Lee, D. R. Magar, J.-H. Chen, K. Chen, Eur. J. Org. Chem. 2012, 353; c) S. Roy, K. Chen, Org. Lett., 2012, 14, 2496.
    13. For overview and bioactivity see: a) N. Jain, R. M. Kanojia, J. Xu, G. Jian-Zhong, P. Emmanuel, M.-T. Lai, D. Fuyong, M. Amy, A. George, H. DoWon, L. Scott, S. Zhihua, J. Med. Chem., 2006, 49, 3056; b) Y. Kashiwada, K. Yamazaki, Y. Ikeshiro, T. Yamasisbi, T. Fujioka, K. Milashi, K. Mizuki, L. M. Cosentino, K. S. Fowke, L. M. Natschke, K.-H. Lee, Tetrahedron 2001, 57, 1559; c) K. C. Nicolaou, J. A. Pfefferkorn, A. J. Roecker, G.-Q. Cao, S. Barluenga, H. J. Mitchell, J. Am. Chem. Soc. 2000, 122, 9939.
    14. For reviews on chiral chromenes and chromans see: a) C. S. Hong, Tetrahedron 2009, 65, 3931; b) Y.-L. Shi, M. Shi, Org. Biomol. Chem. 2007, 5, 1499; c) G. Zeni, R. C. Larock, Chem. Rev. 2004, 104, 2285; d) G. X. Wang, N. X. Wang, S. Tang, J. L. Yu, X. L. Tang, Prog. Chem. 2008, 20, 518.
    15. Selected methods for synthesis of non-chiral chromenes: a) R. Ballini, G. Bosica, D. Fiorini, A. Palmieri, Green Chem., 2005, 7, 825; b) B. Lesch, S. Bräse, Angew. Chem., 2004, 116, 118; Angew. Chem., Int. Ed. 2004, 43, 115; c) M.-C. Yan, Y.-J. Jang, W.-Y. Kuo, Z. Tu, K.-H. Shen, T.-S. Cuo, C.-H. Ueng, C.-F. Yao, Heterocycles, 2002, 57, 1033; d) P. T. Kaye, M. A. Musa, Synthesis, 2002, 2701; e) P. T. Kaye, X. W. Nocanda, Synthesis, 2001, 2389; f) M.-C. Yan, Y.-J. Jang, C.-F. Yao, Tetrahedron Lett. 2001, 42, 2717; g) R. S. Varma, G. W. Kabalka, Heterocycles, 1985, 23, 139; h) F. Bigi, S. Carloni, R. Maggi, C. Muchetti, G. Sartori, J. Org. Chem. 1997, 62, 7024; i) Q. Wang, M. G. Finn, Org. Lett. 2000, 2, 4063; j) J. Y. Goujon, F. Zammattio, S. Pagnoncelli, Y. Boursereau, B. Kirschleger, Synlett 2002, 2, 322; k) P. T. Kaye, M. A. Musa, X. W. Nocanda, R. S. Robinson, Org. Biomol. Chem. 2003, 1, 1133; l) S. W. Youn, J. I. Eom, Org. Lett. 2005, 7, 3355; m) G.-L. Zhao, Y.-L. Shi, M. Shi, Org. Lett. 2005, 7, 4527; n) J. C. Hershberger, L. Zhang, G. Lu, H. C. Malinakova, J. Org. Chem. 2006, 71, 231.
    16. a) W. S. Bowers, Comprehensive Insect Physiology, Biochemistry and Pharmacology; L. I. Gilbert, G. A. Kerkut, Eds.; Pergamon: Oxford, 1985; Vol. 8, p 551; b) W. S. Bowers, T. Ohta, J. S. Cleere, P. A. Marsella, Science 1976, 193, 542; c) N. Ishizuka, K. Matsumura, K. Sakai, M. Fujimoto, S. Mihara, T. Yamamori, J. Med. Chem. 2002, 45, 2041; d) R. Bergmann, R. Gericke, J. Med. Chem. 1990, 33, 492; e) G. Burrell, F. Cassidy, J. M. Evans, D. Lightowler, G. Stemp, J. Med. Chem. 1990, 33, 3023; f) R. Gericke, J. Harting, I. Lues, C. Schittenhelm, J. Med. Chem. 1991, 34, 3074; g) T. S. Rao, A. K. Singth, G. K. Trievdi, Heterocycles 1984, 22, 1377; h) S. Deshpande, H. H. Mathur, G. K. Trivedi, Synthesis 1983, 835; i) H. Booth, D. Huckle, I. M. Lockhart, J. Chem. Soc., Perkin Trans. 2, 1973, 227.
    17. For synthesis of chiral chromenes see: a) S. L. V. Velde, E. N. Jacobsen, J. Org. Chem. 1995, 60, 5380; b) C. Tahtaoui, A. Demailly, C. Guidemann, C. Joyeux, P. Schneider, J. Org. Chem. 2010, 75, 3781; c) S. Chang, R. H. Grubbs, J. Org. Chem. 1998, 63, 864; d) K. J. Hodgetts, Tetrahedron 2005, 61, 6860; e) M. Kawasaki, H. Kakuda, M. Goto, S. Kawabata, T. Kometani, Tetrahedron: Asymmetry 2003, 14, 1529; f) T. Konoike, K.- I. Matsumura, T. Yorifuji, S. Shinomoto, Y. Ide, T. Ohya, J. Org. Chem. 2002, 67, 7741.
    18. For selected references on organocatalysed oxa-Michael-Aldol reaction see: a) B. C. Das, S. Mohapatra, P. D. Campbell, S. Nayak, S. M. Mahalingam, T. Evans, Tetrahedron Lett. 2010, 51, 2567; b) D.-Q. Xu, Y.-F. Wang, S.-P. Luo, S. Zhang, A.-G. Zhong, H. Chen, Z.-Y. Xu, Adv. Synth. Catal., 2008, 350, 2610; c) T. Karthikeyan, S. Sankararaman, Tetrahedron: Asymmetry, 2008, 19, 2741; d) R. Rios, H. Sundén, I. Ibrahem, A. Córdova, Tetrahedron Lett. 2007, 48, 2181; e) H. Li, J. Wang, T. E. Nunu, L. Zu, W. Jiang, S. Wei, W. Wang, Chem. Commun. 2007, 507; f) W. Wang, H. Li, J. Wang, L. Zu, J. Am. Chem. Soc. 2006, 128, 10354; g) T. Govender, L. Hojabri, F. M. Moghaddam, P. I. Arvidsson, Tetrahedron: Asymmetry 2006, 17, 1763; h) H. Sundén, I. Ibrahem, G.-L. Zhao, L. Eriksson, A. Córdova, Chem. Eur. J. 2007, 13, 574.
    19. For selected references on organocatalyzed synthesis of chiral chromans see: a) D. B. Ramachary, M. S. Prasad, R. Madhavachary, Org. Biomol. Chem. 2011, 9, 2715; b) B.-C. Hong, P. Kotame, J.-H. Liao, Org. Biomol. Chem. 2011, 9, 382; c) L. Zu, S. Zhang, H. Xie, W. Wang, Org. Lett. 2009, 11, 1627.
    20. a) S.-Z. Nie, Z.-P. Hu, Y.-N. Xuan, J.-J. Wang, X.-M. Li, M. Yan, Tetrahedron: Asymmetry 2010, 21, 2055; b) W.-Y. Chen, L. Ouyang, R.-Y. Chen, X.-S. Li, Tetrahedron Lett. 2010, 51, 3972.
    21. J.-W. Xie, L.-P. Fan, H. Su, X.-S. Li, D.-C. Xu, Org. Biomol. Chem. 2010, 8, 2117.
    22. a) C. Chang, S.-H. Li, R. J. Reddy, K. Chen, Adv. Synth. Catal. 2009, 351, 1273; b) R. J. Reddy, H.-H. Kuan, T.-Y. Chou, K. Chen, Chem. Eur. J. 2009, 15, 9294; c) D. R. Magar, C. Chang, Y.-F. Ting, K. Chen, Eur. J. Org. Chem. 2010, 2062; d) Y.-F. Ting, C. Chang, R. J. Reddy, D. R. Magar, K. Chen, Chem. Eur. J. 2010, 7030.
    23. Detailed X-ray crystallographic data are available from the CCDC, 12 Union Road, Cambridge CB2, 1EZ, UK (www.ccdc.cam.ac.uk/data_request/cif) for chroman derivative 58a (CCDC No. 848085).

    下載圖示
    QR CODE