研究生: |
黃敬庭 Huang, Jing-Ting |
---|---|
論文名稱: |
求解多極值連續型最佳化問題之演化演算法設計 Design of Evolutionary Algorithm for Solving Multimodal Continuous Optimization Problems |
指導教授: |
蔣宗哲
Chiang, Tsung-Che |
口試委員: |
鄒慶士
Tsou, Ching-Shih 温育瑋 Wen, Yu-Wei 蔣宗哲 Chiang, Tsung-Che |
口試日期: | 2023/01/31 |
學位類別: |
碩士 Master |
系所名稱: |
資訊工程學系 Department of Computer Science and Information Engineering |
論文出版年: | 2023 |
畢業學年度: | 111 |
語文別: | 中文 |
論文頁數: | 62 |
中文關鍵詞: | 演化演算法 、多極值連續型最佳化 、利基演算法 、子族群 、差分演化演算法 |
研究方法: | 實驗設計法 |
DOI URL: | http://doi.org/10.6345/NTNU202300305 |
論文種類: | 學術論文 |
相關次數: | 點閱:127 下載:0 |
分享至: |
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
多極值連續型最佳化問題需要在決策空間中找出數個相異的全域最佳解,許多現實問題皆是多極值問題,如:桁架 (truss) 結構最佳化、藥物分子設計及工廠排程問題等,在此類問題中找到相異的全域最佳解可以幫助決策者了解問題背後隱藏的因素,或是提供備選方案以備不時之需。近幾年演化演算法逐漸成為解最佳化問題的主流演算法,此類方法利用解個體之間彼此交換資訊、產生新的解個體以此來使族群逐漸往全域最佳解收斂,但收斂意味者族群多樣性喪失或陷入區域最佳解而無法找出其它潛力解,因此如何避免收斂並維持族群多樣性以搜尋不同的區域,是利用演化演算法解多極值最佳化問題的其中一項重要議題。
本論文提出了使用混合利基法之潛力區域探索演算法框架 (Promising Area Exploration based on Hybrid Niching, PAEHN),探討如何將主要族群分為多個子族群以搜尋解空間中的相異區域。在演化過程中記錄潛力解區域,當子族群都已收斂或停滯時,在潛力解區域附近重新產生主要族群以搜尋更多最佳解。此框架可套用不同的演化演算法進行演化,本論文使用 SHADE 作為基底演算法,SHADE 為自適應參數控制的差分演算法且已被證實於連續型單目標最佳化問題具有良好的效率。實驗結果得知 PAEHN 在容許誤差小的情況下具有良好的競爭力;而在容許誤差大的情況下具有相當強的優勢,於 20 個測試問題中有 18 個問題可以找出所有的全域最佳解,且 PAEHN 不需要使用問題的任何先備知識。
[1] R. Storn and K. Price, “Differential evolution – a simple and efficient heuristic for global optimization over continuous spaces,” Global Optimization, vol. 11, pp. 341-359, 1997.
[2] J. Kennedy and R. Eberhart, “Particle swarm optimization,” Proceedings of ICNN'95 - International Conference on Neural Networks, vol. 4, pp. 1942-1948, 1995.
[3] D. E. Goldberg, Genetic Algorithms in Search, Optimization, and Machine Learning, 1st ed. USA: Addison-Wesley Professional, 1989.
[4] P. Moscato “On evolution, search, optimization, genetic algorithms and martial arts: towards memetic algorithms.” Caltech Concurrent Computation Program, C3P Report, vol. 826, 1989.
[5] K. A. De Jong, “An analysis of the behavior of a class of genetic adaptive systems,” Ph.D. Dissertation, University of Michigan, 1975.
[6] A. Pétrowski, “A clearing procedure as a niching method for genetic algorithms,” Proceedings of IEEE International Conference on Evolutionary Computation, pp. 798-803, 1996.
[7] J.-P. Li, M. E. Balazs, G. T. Parks ,and P. J. Clarkson, “A species conserving genetic algorithm for multimodal function optimization,” Evol. Comput., pp. 207-234, 2002.
[8] D. E. Goldberg and J. Richardson, “Genetic algorithms with sharing for multimodal function optimization,” in Genetic Algorithms and Their Applications: Proceedings of the Second International Conference on Genetic Algorithms, J. J. Grefenstette, Ed., Hillsdale, New Jersey, US: Lawrence Erlbaum Associates, Inc, vol. 4149, pp. 41-49, 1987.
[9] R. Thomsen, “Multimodal optimization using crowding-based differential evolution,” Proceedings of the 2004 Congress on Evolutionary Computation (IEEE Cat. No.04TH8753), vol.2, pp. 1382-1389, 2004.
[10] X. Li, “Efficient differential evolution using speciation for multimodal function optimization,” In Proc. 7th Annual Conference on Genetic and Evolutionary Computation (GECCO ’05), pp. 873-880, Jun. 2005.
[11] B. Y. Qu, P. N. Suganthan and J. J. Liang, “Differential evolution with neighborhood mutation for multimodal optimization,” IEEE Transactions on Evolutionary Computation, vol. 15, no. 5, pp. 601-614, 2012.
[12] W. Gao, G. G. Yen and S. Liu, “A cluster-based differential evolution with self-adaptive strategy for multimodal optimization,” IEEE Transactions on Cybernetics, vol. 44, no. 8, pp. 1314-1327, 2013.
[13] S. Biswas, S. Kundu ,and S. Das, “Inducing niching behavior in differential evolution through local information sharing,” IEEE Transactions on Evolutionary Computation, vol. 19, no. 2, pp. 945-958, 2015.
[14] K. Wang, W. Gong, L. Deng ,and L. Wang, “Multimodal optimization via dynamically hybrid niching differential evolution,” Knowledge-Based Systems, vol. 238, pp. 107972, 2022.
[15] X. Lin, W. Luo ,and P. Xu, “Differential evolution for multimodal optimization with species by nearest-better clustering,” IEEE Transactions on Cybernetics, vol. 51, no. 2, pp. 970-983, 2019.
[16] Z.-J. Wang, Z.-H. Zhan, Y. Lin, W.-J. Yu, H.-Q. Yuan, T.-L. Gu, S. Kwong ,and J. Zhang, “Dual-strategy differential evolution with affinity propagation clustering for multimodal optimization problems,” IEEE Transactions on Evolutionary Computation, vol. 22, no. 6, pp. 894-908, 2017.
[17] IEEE CEC special session on: niching methods for multimodal optimization website, url: https://titan.csit.rmit.edu.au/~e46507/cec13-niching/
[18] X. Li, A. Engelbrecht and M. G. Epitropakis, “Benchmark functions for CEC’2013 special session and competition on niching methods for multimodal function optimization,” RMIT University, Evolutionary Computation and Machine Learning Group, Australia, Tech. Rep, 2013.
[19] A. W. Iorio and X. Li, “Solving rotated multi-objective optimization problems using differential evolution,” in Australasian Joint Conference on Artificial Intelligence, Springer, Berlin, Heidelberg, 2004, pp. 861-872.
[20] C. Lin, A. Qing ,and Q. Feng, “A comparative study of crossover in differential evolution,” Journal of Heuristics, vol. 17, no. 6, pp. 675-703, 2011.
[21] B. Y. Qu, J. J. Liang, P. N. Suganthan ,and T. Chen, “Ensemble of clearing differential evolution for multi-modal optimization,” in International Conference in Swarm Intelligence, Springer, Berlin, Heidelberg, pp. 350-357, 2012.
[22] K. Krishna and M. Murty, “Genetic k-means algorithm,” IEEE Transactions on Systems, Man, and Cybernetics, Part B (Cybernetics), vol. 29, no. 3, pp. 433-439, Jun. 1999.
[23] B. J. Frey and D. Dueck, “Clustering by passing messages between data points,” Science, vol. 315, no. 5814, pp. 972-976, 2007.
[24] M. Preuss, L. Schönemann ,and M. Emmerich, “Counteracting genetic drift and disruptive recombination in (μ, +λ)-EA on multimodal fitness landscapes,” Proceedings of the 7th Annual Conference on Genetic and Evolutionary Computation, pp. 865-872, 2005.
[25] A. K. Qin, V. L. Huang ,and P. N. Suganthan, “Differential evolution algorithm with strategy adaptation for global numerical optimization,” IEEE Transactions on Evolutionary Computation, vol. 13, no. 2, pp. 398-417, 2008.
[26] J. Zhang and A. C. Sanderson, “JADE: adaptive differential evolution with optional external archive,” IEEE Transactions on Evolutionary Computation, vol. 13, no. 5, pp. 945-958, 2009.
[27] R. Tanabe and A. Fukunaga, “Success-history based parameter adaptation for differential evolution,” 2013 IEEE Congress on Evolutionary Computation, pp. 71-78, 2013.
[28] J.-F. Yeh, T.-Y. Chen ,and T.-C. Chiang, “Modified L-SHADE for single objective real-parameter optimization,” 2019 IEEE Congress on Evolutionary Computation (CEC), pp, 381-386, 2019.
[29] J. Lampinen and I. Zelinka, “On stagnation of the differential evolution algorithm,” Proceedings of MENDEL, pp, 76-83, 2000.
[30] M. Yang, C Li, Z Cai ,and J. Guan, “Differential evolution with auto-enhanced population diversity,” IEEE Transactions on Cybernetics, vol. 45, no. 2, pp. 302-315, 2014.
[31] S. Agrawal, A. Tiwari, P. Naik ,and A. Srivastava, “Improved differential evolution based on multi-armed bandit for multimodal optimization problems,” Applied Intelligence, pp. 7625-7646, 2021
[32] M. G. Epitropakis, X. Li ,and E. K. Burke, “A dynamic archive niching differential evolution algorithm for multimodal optimization,” 2013 IEEE Congress on Evolutionary Computation, pp. 79-86, 2013.
[33] Z. Liao, X. Mi, Q. Pang ,and Y. Sun, “History archive assisted niching differential evolution with variable neighborhood for multimodal optimization,” Swarm and Evolutionary Computation, vol. 76, pp. 101206, 2023.
[34] Y. Wang, H.-X. Li, G. G. Yen ,and W. Song, “MOMMOP: multiobjective optimization for locating multiple optimal solutions of multimodal optimization problems,” IEEE Transactions on Cybernetics, vol. 45, no. 4, pp. 830-843, 2014.
[35] K. Deb, A. Pratap, S. Agarwal ,and T. Meyarivan, “A fast and elitist multiobjective genetic algorithm: NSGA-II,” IEEE Transactions on Evolutionary Computation, vol. 6, no. 2, pp. 182-197, 2002.