研究生: |
訾德蕙 |
---|---|
論文名稱: |
同位素標記法搭配質譜技術進行原發性肝癌中具癌症幹細胞特性之差異性蛋白質體分析 |
指導教授: | 陳頌方 |
學位類別: |
碩士 Master |
系所名稱: |
化學系 Department of Chemistry |
論文出版年: | 2011 |
畢業學年度: | 99 |
語文別: | 中文 |
論文頁數: | 107 |
中文關鍵詞: | 同重元素相對與絕對定量標記法 、癌症類幹細胞 、液相層析電噴灑游離串聯質譜 、肝癌 |
論文種類: | 學術論文 |
相關次數: | 點閱:407 下載:15 |
分享至: |
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
肝細胞癌(hepatocellular carcinoma,HCC)是種原發性肝癌,同時也是種常見的癌症,尤其是在東南亞以及非洲。腫瘤中有一群具幹細胞特性之癌細胞,有造成腫瘤之能力,比一般癌症細胞更容易產生抗藥性並與腫瘤復發及轉移息息相關,稱之為癌症幹細胞。本實驗主要目的為探討人類肝癌細胞株Hep3B中癌症類幹細胞之特異蛋白質,透過分析蛋白質體之差異性表現,有助於瞭解肝癌進展。
運用同重元素相對與絕對定量標記法(isobaric tags for relative and absolute quantitation,iTRAQ®)比較癌症細胞以及不同特性之癌症類幹細胞:可形成球體、少許細胞數即可在小鼠中生長、具抗藥性以及擁有幹細胞表現之特性。從癌症細胞株和癌症類幹細胞株分別萃取一對蛋白質樣品,經還原、烷化、胰蛋白酶水解成胜肽,再標記上iTRAQ®試劑,進一步,將標示上iTRAQ®試劑的胰蛋白酶水解胜肽混合,利用強陽離子交換樹脂(SCX)、等電聚焦分級分離儀(OFFGEL)和鹼性逆相層析(basic reversed-phase chromatography)分餾樣品,接著進入奈米級液相層析電噴灑游離串聯質譜儀(nanoLC ESI tandem MS)偵測。由獲得的特定胜肽,針對每一標記產生之訊號離子質荷比(m/z=114-117)的面積來做相對定量分析,同時胜肽碎片離子(b-及y-型離子)可做為蛋白質鑑定資訊。
結合所有分餾樣品,總計約有1,273個蛋白質被 ProteinPilot 軟體鑑定及定量;其中有20和30個蛋白質在癌症細胞及癌症類幹細胞間分別呈現出大於兩倍及小於一半之差異。最後,將這些具顯著性差異的50個蛋白質使用GeneGo軟體進行分析,發現這些差異性表現蛋白質與肝腫瘤、原發性肝癌以及肝病變有所關連,並在代謝、免疫反應以及細胞骨架重組路徑中被發現。在未來,將進行功能性的驗證。
參考文獻
1.Kumar V, Fausto N, Abbas. Robbins & Cotran Pathologic Basis of Disease (7th ed.). Saunders: 914–917. ISBN 978-0-721-60187-8.
2.Bosch FX, Ribes J, Diaz M, Cleries R. Primary liver cancer: worldwide incidence and trends. Gastroenterology 2004, 127(5 Suppl 1): S5-S16.
3.Cancer Research UK’s Patient Information Website CancerHelp UK. About Liver Cancer - A Quick Guide. Cancer Research UK 2009.
4.Ferlay J, Shin HR, Bray F, Forman D, Mathers C, Parkin DM. Estimates of worldwide burden of cancer in 2008: GLOBOCAN 2008. Int J Cancer 2010, 127(12): 2893–2917.
5.Bruix J. Treatment of hepatocellular carcinoma. Hepatology 1997, 25(2): 259–262.
6.Forner A, Hessheimer AJ, Isabel Real M, Bruix J. Treatment of hepatocellular carcinoma. Crit Rev Oncol Hematol 2006, 60(2): 89-98.
7.Baum CM, Weissman IL, Tsukamoto AS, Buckle AM, Peault B. Isolation of a candidate human hematopoietic stem-cell population. Proc Natl Acad Sci USA 1992, 89(7): 2804-2808.
8.Uchida N, Sutton RE, Friera AM, He D, Reitsma MJ, Chang WC, Veres G, Scollay R, Weissman IL. HIV, but not murine leukemia virus, vectors mediate high efficiency gene transfer into freshly isolated G0/G1 human hematopoietic stem cells. Proc Natl Acad Sci USA 1998, 95(20): 11939-11944.
9.Wu XZ. Origin of cancer stem cells: the role of self-renewal and differentiation. Ann Surg Oncol 2008, 15(2): 407-414.
10.Thiery JP. Epithelial-mesenchymal transitions in tumor progression. Nature Cancer Review 2002, 2(6): 442-454.
11.Mani SA, Guo W, Liao MJ, Eaton E, Ayyanan A, Zhou A, Brooks M, Reinhard F, Zhang C, Shipitsin M, CampbellLL, Polyak K, Brisken C, Yang J, Weinberg RA. The epithelial-mesenchymal transition generates cells with properties of stem cells. Cell 2008, 133(4): 704-715.
12.Ho MM, Ng AV, Lam S, Hung JY. Side population in human lung cancer cell lines and tumors is enriched with stem-like cancer cells. Cancer Res 2007, 67(10): 4827-4833.
13.Zhou S, Schuetz JD, Bunting KD, Colapietro AM, Sampath J, Morris JJ, Lagutina I, Grosveld GC, Osawa M, Nakauchi H, Sorrentino BP. The ABC transporter Bcrp1/ABCG2 is expressed in a wide variety of stem cells and is a molecular determinant of the side-population phenotype. Nat Med 2001, 7(9): 1028-1034.
14.Uchida N, Buck DW, He D, Reitsma MJ, Masek M, Phan TV, Tsukamoto AS, Gage FH, Weissman IL. Direct isolation of human central nervous system stem cells. Proc. Natl. Acad. Sci. USA 2000, 97: 15720–15725.
15.Pardal R, Clarke MF, Morrison SJ. Applying the principles of stem-cell biology to cancer. Nat Rev Cancer 2003, 3(12): 895-902.
16.Zhou G, Li H, DeCamp D, Chen S, Shu H, Gong Y, Flaig M, Gillespie JW, Hu N, Taylor PR, Emmert-Buck MR, Liotta LA, Petricoin EF 3rd, Zhao Y. 2D differential in-gel electrophoresis for the identification of esophageal scans cell cancer-specific protein markers. Mol Cell Proteomics 2002, 1(2): 117-124.
17.Tonge R, Shaw J, Middleton B, Rowlinson R, Rayner S, Young J, Pognan F, Hawkins E, Currie I, Davison M. Validation and development of fluorescence two-dimensional differential gel electrophoresis proteomics technology. Proteomics 2001, 1(3): 377-396.
18.Ong SE, Blagoev B, Kratchmarova I, Kristensen DB, Steen H, Pandey A, Mann M. Stable isotope labeling by amino acids in cell culture, SILAC, as a simple and accurate approach to expression proteomics. Mol Cell Proteomics 2002, 1(5): 376-86.
19.Gygi SP, Rist B, Gerber SA, Turecek F, Gelb MH, Aebersold R. Quantitative analysis of complex protein mixtures using isotope-coded affinity tags. Nat Biotechnol 1999, 17(10): 994-999.
20.Ross PL, Huang YN, Marchese JN, Williamson B, Parker K, Hattan S, Khainovski N, Pillai S, Dey S, Daniels S, Purkayastha S, Juhasz P, Martin S, Bartlet-Jones M, He F, Jacobson A, Pappin DJ. Multiplexed protein quantitation in Saccharomyces cerevisiae using amine-reactive isobaric tagging reagents. Mol Cell Proteomics 2004, 3(12): 1154-1169.
21.Thompson A, Schäfer J, Kuhn K et al. Tandem mass tags: a novel quantification strategy for comparative analysis of complex protein mixtures by MS/MS. Anal Chem 2003, 75(8): 1895–904.
22.Dayon L, Hainard A, Licker V, Turck N, Kuhn K, Hochstrasser DF, Burkhard PR, Sanchez JC. Relative quantification of proteins in human cerebrospinal fluids by MS/MS using 6-plex isobaric tags. Anal Chem 2008, 80(8): 2921–31.
23.Shevchenko A, Shevchenko A. Evaluation of the efficiency of in-gel digestion of proteins by peptide isotopic labeling and MALDI mass spectrometry. Anal Biochem 2001, 296(2): 279-283.
24.Yao X, Afons C, Fenselau C. Dissection of Proteolytic 18O Labeling: Endoprotease-Catalyzed 16O-to-18O Exchange of Truncated Peptide Substrates. J Proteome Res 2003, 2: 147-152.
25.Hsu JL, Huang SY, Chow NH, Chen SH. Stable-isotope dimethyl labeling for quantitative proteomics. Anal Chem 2003, 75(24): 6843-6852.
26.Boersema PJ, Raijmakers R, Lemeer S, Mohammed S, Heck AJ. Multiplex peptide stable isotope dimethyl labeling for quantitative proteomics. Nat Protoc 2009,4(4): 484-494.
27.Reya T, Morrison SJ, Clarke MF, Weissman IL. Stem cells, cancer, and cancer stem cells. Nature 2001, 414: 105-111.
28.Morrison SJ, Shah NM, Anderson DJ. Regulatory mechanisms in stem cell biology. Cell 1997, 88: 287-298.
29.Pardal R, Clarke MF, Morrison SJ. Applying the principles of stem-cell biology to cancer. Nature Reviews Cancer 2003, 3: 895-902.
30.Chaerkady R, Kerr CL, Kandasamy K, Marimuthu A, Gearhart JD, Pandey A. Comparative proteomics of human embryonic stem cells and embryonal carcinoma cells. Proteomics 2010, 10(7): 1359-1373.
31.Griffiths SD, Burthem J, Unwin RD, Holyoake TL, Melo JV, Lucas GS, Whetton AD. The use of isobaric tag peptide labeling (iTRAQ) and mass spectrometry to examine rare, primitive hematopoietic cells from patients with chronic myeloid leukemia. Mol Biotechnol 2007, 36(2): 81-89.
32.Lund TC, Anderson LB, McCullar V, Higgins L, Yun GH, Grzywacz B, Verneris MR, Miller JS. iTRAQ is a useful method to screen for membrane-bound proteins differentially expressed in human natural killer cell types. J Proteome Res 2007, 6(2): 644-653.
33.Jin J, Kwon YW, Paek JS, Cho HJ, Yu J, Lee JY, Chu IS, Park IH, Park YB, Kim HS, Kim Y. Analysis of differential proteomes of induced pluripotent stem cells by protein-based reprogramming of fibroblasts. J Proteome Res 2011, 10(3): 977-989.
34.Bradford, M. A Rapid and Sensitive Method for the Quantitation of Microgram Quantities of Protein Utilizing the Principle of Protein-Dye Binding. Anal Biochem 1976, 72: 248-254.
35.Reisner, A. H., Nemes, P., and Bucholtz, C. The use of Coomassie brilliant blue G250 perchloric acid solution for staining in electrophoresis and isoelectric focusing on polyacrylamide gels. Anal Biochem 1975, 64: 509–516.
36.Fazekas de St Groth S, Webster RG, Datyner A. Two new staining procedures for quantitative estimation of proteins on electrophoretic strips. Biochim Biophys Acta 1963, 14(71): 377-391.
37.Sedmak JJ, Grossberg SE. A rapid, sensitive, and versatile assay for protein using Coomassie brilliant blue G250. Anal Biochem 1977, 79(1-2): 544-552.
38.Compton SJ, Mechanism of dye response and interference in the Bradford protein assay. Jones CGAnal Biochem 1985, 151(2): 369-374.
39.Kang P, Mechref Y, Klouckova I, Novotny MV. Solid-phase permethylation of glycans for mass spectrometric analysis. Rapid Commun Mass Spectrom 2005, 19(23): 3421-3428.
40.Cabral MP, Soares NC, Aranda J, Parreira JR, Rumbo C, Poza M, Valle J, Calamia V, Lasa I, Bou G. Proteomic and functional analyses reveal a unique lifestyle for Acinetobacter baumannii biofilms and a key role for histidine metabolism. J Proteome Res 2011.
41.Kong RP, Siu SO, Lee SS, Lo C, Chu IK. Development of online high-/low-pH reversed-phase-reversed-phase two-dimensional liquid chromatography for shotgun proteomics: A reversed-phase-strong cation exchange-reversed-phase approach. J Chromatogr A 2011, 1218(23): 3681-3688.
42.Lau E, Lam MP, Siu SO, Kong RP, Chan WL, Zhou Z, Huang J, Lo C, Chu IK. Combinatorial use of offline SCX and online RP-RP liquid chromatography for iTRAQ-based quantitative proteomics applications. Mol Biosyst 2011, 7(5): 1399-1408.
43.Phillips HL, Williamson JC, van Elburg KA, Snijders AP, Wright PC, Dickman MJ. Shotgun proteome analysis utilising mixed mode (reversed phase-anion exchange chromatography) in conjunction with reversed phase liquid chromatography mass spectrometry analysis. Proteomics 2010, 10(16): 2950-2960.
44.Ye H, Sun L, Huang X, Zhang P, Zhao X. A proteomic approach for plasma biomarker discovery with 8-plex iTRAQ labeling and SCX-LC-MS/MS. Mol Cell Biochem 2010, 343(1-2):91-99.
45.Evans FF, Raftery MJ, Egan S, Kjelleberg S. Profiling the secretome of the marine bacterium Pseudoalteromonas tunicata using amine-specific isobaric tagging (iTRAQ). J Proteome Res 2007, 6(3): 967-975.
46.Warren CM, Geenen DL, Helseth DL Jr, Xu H, Solaro RJ. Sub-proteomic fractionation, iTRAQ, and OFFGEL-LC-MS/MS approaches to cardiac proteomics. J Proteomics 2010, 73(8): 1551-1561.
47.Ernoult E, Bourreau A, Gamelin E, Guette C. A proteomic approach for plasma biomarker discovery with iTRAQ labelling and OFFGEL fractionation. J Biomed Biotechnol 2010, 2010: 927-917.
48.Ernoult E, Gamelin E, Guette C. Improved proteome coverage by using iTRAQ labelling and peptide OFFGEL fractionation. Proteome Sci 2008, 13(6): 27.
49.Chenau J, Michelland S, Sidibe J, Seve M. Peptides OFFGEL electrophoresis: a suitable pre-analytical step for complex eukaryotic samples fractionation compatible with quantitative iTRAQ labeling. Proteome Sci 2008, 26(6): 9.
50.Gilar M, Olivova P, Daly AE, Gebler JC. Orthogonality of separation in two-dimensional liquid chromatography. Anal Chem 2005, 77(19): 6426-6434.
51.Andersen K, Mori H, Fata J, Bascom J, Oyjord T, Mælandsmo GM, Bissell M. The metastasis-promoting protein S100A4 regulates mammary branching morphogenesis. Dev Biol 2011, 352(2): 181-190.
52.McKiernan E, McDermott EW, Evoy D, Crown J, Duffy MJ. The role of S100 genes in breast cancer progression. Tumour Biol 2011, 32(3): 441-450.
53.El-Abd E, El-Tahan R, Fahmy L, Zaki S, Faid W, Sobhi A, Kandil K, El-Kwisky F. Serum metastasin mRNA is an important survival predictor in breast cancer. Br J Biomed Sci 2008, 65(2): 90-94.
54.Petersson S, Shubbar E, Enerbäck L, Enerbäck C. Expression patterns of S100 proteins in melanocytes and melanocytic lesions. Melanoma Res 2009, 19(4): 215-225.
55.Hofmeister-Mueller V, Vetter-Kauczok CS, Ullrich R, Meder K, Lukanidin E, Broecker EB, Straten P, Andersen MH, Schrama D, Becker JC. Immunogenicity of HLA-A1-restricted peptides derived from S100A4 (metastasin 1) in melanoma patients. Cancer Immunol Immunother 2009, 58(8): 1265-1273.
56.Bolander A, Agnarsdóttir M, Wagenius G, Strömberg S, Pontén F, Ekman S, Brattström D, Larsson A, Einarsson R, Ullenhag G, Hesselius P, Bergqvist M. Serological and immunohistochemical analysis of S100 and new derivatives as markers for prognosis in patients with malignant melanoma. Melanoma Res 2008, 18(6): 412-419.
57.Lo JF, Yu CC, Chiou SH, Huang CY, Jan CI, Lin SC, Liu CJ, Hu WY, Yu YH. The epithelial-mesenchymal transition mediator S100A4 maintains cancer-initiating cells in head and neck cancers. Cancer Res 2011, 71(5): 1912-1923.