簡易檢索 / 詳目顯示

研究生: 李麗卿
Li-Ching Lee
論文名稱: 第十七型脊髓小腦共濟失調症致病機轉:伴隨蛋白的保護功能與TATA結合蛋白CAG三核苷重複擴增造成不正常蛋白質摺疊之研究
Spinocerebellar ataxia 17 (SCA17) pathogenic mechanisms: Chaperones function and misfolding proteins caused by the expanded polyglutamine in TATA-binding protein
指導教授: 李桂楨
Lee, Guey-Jen
學位類別: 博士
Doctor
系所名稱: 生命科學系
Department of Life Science
論文出版年: 2009
畢業學年度: 97
語文別: 英文
論文頁數: 97
中文關鍵詞: 第十七型脊髓小腦萎縮症TBP多麩醯胺擴增細胞模式差異性螢光標記二維電泳伴隨蛋白A5伴隨蛋白A8伴隨蛋白B1基因表現分析
英文關鍵詞: spinocerebellar ataxia type 17, TBP expansion, cell model, 2D-DIGE, HSPA5, HSPA8, HSPB1, gene expression analysis
論文種類: 學術論文
相關次數: 點閱:409下載:3
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 摘要
    遺傳性第十七型脊髓小腦萎縮症(SCA17)與染色體6q27位置的TATA binding protein (TBP)基因的CAG三核苷重複擴增相關。TBP廣泛表現在中樞神經系統及周邊組織。臨床上SCA17病患症狀很廣泛,致病機轉亦未完全清楚。為探討SCA17疾病致病機轉,我們建立短暫大量表現及穩定誘導正常TBP-Q36及多麩醯胺擴增TBP-Q61的人類胚胎腎293細胞,並利用差異性螢光標記二維電泳、質譜、免疫轉漬等方法,分析蛋白質的表現。以doxycycline誘導表現後,擴增的TBP-Q61形成聚集,且活化的caspase-3皆顯著增加。蛋白質體分析顯示23個蛋白質的差異表現在1.35倍以上。進一步以二維電泳及西方免疫轉漬確認HSPA5、HSPA8、PARK7的差異表現。淋巴細胞的蛋白質分析顯示,與正常人的淋巴細胞相較,帶有多麩醯胺擴增TBP的病患淋巴細胞,其HSPA5、HSPA8、HSPB1的表現顯著下降。進一步利用lenti病毒轉染,檢視geldanamycin對HSPA5表現及SCA17性狀的調節。在多麩醯胺擴增TBP等位基因的檢測方面,分析了臺灣地區帕金森氏症、阿茲海默氏症、非典型帕金森氏症候群患者的TBP基因CAG 三核苷酸重複,共發現6個擴增的等位基因(44 ~ 46Q)。此類非典型小腦萎縮症病患的報導,有助於疾病性質的瞭解。綜合上述,實驗結果顯示利用蛋白質體分析來找出和SCA17疾病致病機轉相關的差異表現蛋白,有助於致病機轉的瞭解,並可能依據來發展治療策略。

    Abstract
    Expansion of the CAG repeat of the TATA-box binding protein (TBP) gene has been identified as the causative mutations in spinocerebellar ataxia 17 (SCA17). TBP is ubiquitously expressed in both central nervous system and peripheral tissues. The spectrum of SCA17 clinical presentation is broad. The underlying molecular changes of SCA17 are rarely explored. To study the molecular mechanisms underlying SCA17, transient overexpressed and stably induced isogenic 293 cells expressing normal TBP-Q36 and expanded TBP-Q61 were generated and analyzed the expressed proteins using two-dimensional difference in gel electrophoresis (2D-DIGE), followed by mass spectrometry and immunoblotting. Upon induction with doxycycline, the expanded TBP-Q61 formed aggregates with significant increase in cleaved caspase-3. Proteomics study identified a total of 23 proteins with expression changes greater than 1.35 fold. The altered expression of HSPA5, HSPA8 and PARK7 were further validated by 2D and Western immunoblot analyses. In lymphoblastoid cells, significant lower HSPA5, HSPA8 and HSPB1 expression levels were observed in cells with expanded TBP than that of the control cells. Using lentiviral transduced human neuroblastoma cell models, the effects of geldanamycin on HSPA5 expression and SCA17 phenotype were assessed. Genetic screening of triplet expansion in the TBP gene in Taiwanese Parkinson's disease, Alzheimer's disease and atypical parkinsonism revealed a total of 6 expanded alleles (44 ~ 46) in patients group. Reports of additional patients are crucial for better understanding the nature of the disease. Together, this study illustrates the utility of proteomics to identify alterations of proteins which may shed insights into the pathogenesis and lead to therapeutic interventions for this disease.

    Index I Abstract (Chinese) V Abstract VI List of figures and tables VII Introduction 1 Spinocerebellar ataxia 17: autosomal dominant cerebellar ataxia caused by the expanded polyglutamine in TATA-binding protein 1 Polyglutamine expansion diseases: plausible pathogenic mechanisms 2 Protein misfolding and aggregation 2 Oxidative stress and neuroprotection 3 Protein misfolding and endoplasmic reticulum stress 4 Transcriptional dysfunction 5 Potential therapeutic invention: chaperone activation, transcription activation and combinatorial drug therapy 6 Chaperone activation to reduce protein aggregation 6 Transcription activation to reduce protein aggregation 7 Candidate drugs and combinatorial drug therapy 7 Cellular model approach for polyQ diseases: transient/induced and neuronal/non-neuronal 8 Transient murine Neuro-2a model 8 Inducible stable human 293 cell model 8 Human neuroblastoma cell model 9 Lymphoblastoid cell lines: resource of biomaterials in research of neurological disorders 10 Proteomic approach for studying polyQ expansion diseases: 2-dimensional fluorescence difference in gel electrophoresis 11 Aims 13 Materials and methods 15 I. To generate stably induced isogenic 293 cells expressing normal and expanded TBP and analyze the expressed proteins using 2D-DIGE 15 TBP cDNA constructs 15 Cell cultivation 16 Transfection 16 Dot-blot filter retardation assay 17 Isogenic 293 cell lines 17 Immunocytochemical staining 18 Real-time qPCR 18 Western blotting 19 Caspase-3 activity 19 Protein samples preparation for proteomic analysis 19 Minimal labeling with CyDye Fluors for DIGE 20 IPG strip rehydration and first-dimension isoelectric focusing (IEF) 21 Second-dimension SDS-PAGE 21 Image analysis 22 Gel staining with SYPRO Ruby 22 In-gel digestion 22 Mass spectrometry, protein identification and confirmation 23 Metacore network analysis 24 II. To validate the identified altered expressed proteins using lymphoblastoid cell lines generated from patients with expanded TBP 24 Lymphoblastoid cell lines 24 Western blot analysis 25 III. To generate neuroblastoma SK-N-SH cell models expressing normal and expanded TBP 25 Cell cultivation and transfection 26 Lentiviral expression constructs 26 Lentivirus package and cell transductions 26 SK-N-SH stably transduced cell lines 27 IV. To assess the effects of geldanamycin and HDAC inhibitors on SCA17 phenotype 27 Cell cultivation 27 MTT assay 28 Drug effects on aggregate formation 28 Neuroblastoma cells differentiation and neurite outgrowth analysis 28 V. To set up SCA17 database in various Taiwanese disease populations 29 Subjects 29 Genetic analysis of SCA17 repeats 30 Results… 32 I. Generation of stably induced isogenic 293 cells expressing normal and expanded TBP and analysis of the expressed proteins 32 Cloning and expression of TBP constructs 32 Isogenic TBP cell lines 33 2D-DIGE analysis of the isogenic TBP cell lines 34 2D and Western immunoblot confirmation of altered HSPA5, HSPA8 and PARK7 expression 35 Overexpression of HSPA5 to reduce the aggregate formation caused by expanded TBP 35 Metacore network analysis 36 II. Validation of the altered expressed HSPA5, HSPA8 and HSPB1 using lymphoblastoid cell lines generated from patients with expanded TBP 36 Lymphoblastoid cell lines establishment 36 Analysis of HSPA5, HSPA8, HSPB1 and PARK7 expression 37 III. Generation of neuroblastoma SK-N-SH cell models expressing normal and expanded TBP 38 Transient transfected SK-N-SH cell model 38 Stably transduced SK-N-SH cell model 38 IV. Assessment of geldanamycin and HDAC-inhibitors on SCA17 phenotype 39 Drug assessment using transient transfected HEK-293 cells 40 Drug assessment using transient transduced SH-SY5Y cells 40 V. SCA17 database in various Taiwanese disease populations 41 Frequency distributions of SCA17 repeat lengths 41 Sequence analysis of SCA17 expanded alleles 41 Discussion 43 I. Stably induced isogenic 293 cell model 43 II. Lymphoblastoid cell model 46 III. Neuroblastoma cell model 47 IV. Assessment of geldanamycin and HDAC inhibitors 48 V. Genetic analysis of SCA17 repeat lengths 49 VI. Future study on diseases pathogenesis 50 VII. Conclusion 51 References 53 List of figures and tables Figure 1. Expression of TBP cDNA constructs 73 Figure 2. Expression of TBP cDNA constructs in transiently transfected HEK-293 cells 75 Figure 3. Diagram of the Flp-InTM T-RExTM system 76 Figure 4. Expression of TBP cDNA constructs in stably induced isogenic 293 cells 78 Figure 5. 2D image of soluble proteins from isogenic 293 cells 79 Figure 6. 2D and Western immunoblot analyses of the vector only and isogenic TBP lines using HSPA5, HSPA8, PARK7 and β-actin antibodies 80 Figure 7. Overexpression of HSPA5 in SCA17 transient cell model 81 Figure 8. The best ranked proteome networks delivered from the shortest path net work analysis with 1.35 threshold for 2D-DIGE data 82 Figure 9. Lymphoblastoid cell lines from normal controls and TBP expansion patients 83 Figure 10. Expression of TBP cDNA constructs in SK-N-SH cells 85 Figure 11. Titration of recombinant TBP-Q36 and TBP-Q61 lentiviral stocks 86 Figure 12. Expression of TBP cDNA constructs in lentiviral transduced stable SK-N-SH lines 87 Figure 13. The cytotoxicity of geldanamycin and HDAC inhibitors to 293FT cells 88 Figure 14. The effects of geldanamycin and HDAC inhibitor pre-treatment on aggregate formation in HEK-293 cells transiently expressed expanded TBP 89 Figure 15. Drug assessment using differentiated SH-SY5Y cells 90 Figure 16. Distributions of the SCA17 repeat lengths in controls and patients with PD, AD, or atypical parkinsonism 92 Table 1. Experimental design of 2D-DIGE gels and fluorophore labeling scheme 93 Table 2. Summary of the proteins identified by using 2D-DIGE and MALDI/TOF MS 94

    References
    Agrawal N, Pallos J, Slepko N, Apostol BL, Bodai L, Chang LW, Chiang AS, Thompson LM, Marsh JL. Identification of combinatorial drug regimens for treatment of Huntington's disease using Drosophila. Proc Natl Acad Sci USA 2005;102:3777-3781.
    Anttonen AK, Mahjneh I, Hamalainen RH, Lagier-Tourenne C, Kopra O, Waris L, Anttonen M, Joensuu T, Kalimo H, Paetau A, Tranebjaerg L, Chaigne D, Koenig M, Eeg-Olofsson O, Udd B, Somer M, Somer H, Lehesjoki AE. The gene disrupted in Marinesco-Sjogren syndrome encodes SIL1, an HSPA5 cochaperone. Nat Genet 2005;37:1309-1311.
    Bauer P, Laccone F, Rolfs A, Wullner U, Bosch S, Peters H, Liebscher S, Scheible M, Epplen JT, Weber BH, Holinski-Feder E, Weirich-Schwaiger H, Morris-Rosendahl DJ, Andrich J, Riess O. Trinucleotide repeat expansion in SCA17/TBP in white patients with Huntington's disease-like phenotype. J Med Genet 2004;41:230-232.
    Beal MF, Ferrante RJ. Experimental therapeutics in transgenic mouse models of Huntington's disease. Nat Rev Neurosci 2004;5:373-384.
    Bellorini M, Lee DK, Dantonel JC, Zemzoumi K, Roeder RG, Tora L, Mantovani R. CCAAT binding NF-Y-TBP interactions: NF-YB and NF-YC require short domains adjacent to their histone fold motifs for association with TBP basic residues. Nucleic Acids Res 1997;25:2174-2181.
    Biedler JL, Helson L, Spengler BA. Morphology and growth, tumorigenicity, and cytogenetics of human neuroblastoma cells in continuous culture. Cancer Res 1973;33:2643-2652.
    Boeve BF. Parkinson-related dementias. Neurol Clin 2007;25:761-781, vii.
    Bogdanov MB, Andreassen OA, Dedeoglu A, Ferrante RJ, Beal MF. Increased oxidative damage to DNA in a transgenic mouse model of Huntington's disease. J Neurochem 2001;79:1246-1249.
    Bok KS, Rhim H, Yoo YD, Choi E, Ahn K, Kim IH, Kang S. Expanded polyglutamine tract itself induces cell death in cultured cells. Mol Cells 1999;9:398-402.
    Browne SE, Bowling AC, MacGarvey U, Baik MJ, Berger SC, Muqit MM, Bird ED, Beal MF. Oxidative damage and metabolic dysfunction in Huntington's disease: selective vulnerability of the basal ganglia. Ann Neurol 1997;41:646-653.
    Browne SE, Ferrante RJ, Beal MF. Oxidative stress in Huntington's disease. Brain Pathol 1999;9:147-163.
    Caron M, Imam-Sghiouar N, Poirier F, Le Caër JP, Labas V, Joubert-Caron R. Proteomic map and database of lymphoblastoid proteins. J Chromatogr B Analyt Technol Biomed Life Sci 2002;771:197-209.
    Cha JH. Trancriptional dysregulation in Huntington's disease. Trend Neurosci 2000;23:387-392.
    Chang WH, Cemal CK, Hsu YH, Kuo CL, Nukina N, Chang MH, Hu HT, Li C, Hsieh M. Dynamic expression of Hsp27 in the presence of mutant ataxin-3. Biochem Biophys Res Commun 2005;336:258-267.
    Chen HK, Frenandez-Funez P, Acevedo SF, Lam YC, Kaytor MD, Fernandez MH, Aitken A, Skoulakis EM, Orr HT, botas J, Zoghbi HY. Interaction of Akt-phosphoryated ataxin-1 with 14-3-3 mediates neurodegeneration in spinocerebellar ataxin type 1. Cell 2003;113:457-468.
    Chen CM, Lane HY, Wu YR, Ro LS, Chen FL, Hung WL, Hou YT, Lin CY, Huang SY, Chen IC, Soong BW, Li ML, Hsieh-Li HM, Su MT, Lee-Chen GJ. Expanded trinucleotide repeats in the TBP/SCA17 gene mapped to chromosome 6q27 are associated with schizophrenia. Schizophr Res 2005;78:131-136.
    Chen FL. Genetic testing of spinocerebellar ataxia types 2 and 17 and oxidative stress study of lymphoblastoid cells with SCA17 TBP expansion. NTNU Master's Thesis, 2006.
    Chou AH, Yeh TH, Kuo YL, Kao YC, Jou MJ, Hsu CY, Tsai SR, Kakizuka A, Wang HL. Polyglutamine-expanded ataxin-3 activates mitochondrial apoptotic pathway by upregulating Bax and downregulating Bcl-xL. Neurobiol Dis 2006;21:333-345.
    Chung S, Andersson T, Sonntag KC, Bjorklund L, Isacson O, Kim KS. Analysis of different promoter systems for efficient transgene expression in mouse embryonic stem cell lines. Stem Cells 2002;20:139-145.
    Ciccarone V, Spengler BA, Meyers MB, Biedler JL, Ross RA. Phenotypic diversification in human neuroblastoma cells: Expression of distinct neural crest lineages. Cancer Res 1989;49:219-225.
    Cordeiro Y, Lima LM, Gomes MP, Foguel D, Silva JL. Modulation of prion protein oligomerization, aggregation, and beta-sheet conversion by 4,4'-dianilino-1,1'-binaphthyl-5,5'-sulfonate (bis-ANS). J Biol Chem 2004;279:5346-5352.
    Cummings CJ, Zoghbi HY. Fourteen and counting: unraveling trinucleotide repeat diseases. Hum Mol Genet 2000;9:909-916.
    Damodaran S, Dlugos CA, Wood TD, Rabin RA. Effects of chronic ethanol administration on brain protein levels: a proteomic investigation using 2-D DIGE system. Eur J Pharmacol 2006;547:75-82.
    Dautzenberg FM, Higelin J, Teichert U. Functional characterization of corticotropin-releasing factor type 1 receptor endogenously expressed in human embryonic kidney 293 cells. Eur J Pharmacol 2000;390:51-59.
    Dawson TM, Steiner JP, Dawdon VL, Dinerman JL, Uhl GR, Snyder SH. Immunosuppressant FK506 enhances phosphorylation of nitric oxide synthase and protects against glutamate neurotoxicity. Proc Natl Acad Sci USA 1993;90:9808-9812.
    Dedeoglu A, Kubilus JK, Jeitner TM, Matson SA, Bogdanov M, Kowall NW, Matson WR, CooperAJ, Ratan RR, Beal MF, Hersch SM, Ferrante RJ. Therapeutic effects of cystamine in a murine model of Huntington's disease. J Neurosci 2002;22:8942-8950.
    De Michele G, Maltecca F, Carella M, Volpe G, Orio M, De Falco A, Gombia S, Servadio A, Casari G, Filla A, Bruni A. Dementia, ataxia, extrapyramidal features, and epilepsy: phenotype spectrum in two Italian families with spinocerebellar ataxia type 17. Neurol Sci 2003;24:166-167.
    Dehmelt L, Halpain S. The MAP2/Tau family of microtubule-associated proteins. Genome Biol 2005;6:204-214.
    Diamond MI, Robinson MR, Yamamoto KR. Regulation of expanded polyglutamine protein aggregation and nuclear localization in glucocorticoid receptor. Proc Natl Acad Sci 2000;97:657-661.
    DiFiglia M, Sapp E, Chase KO, Davies SW, Bates GP, Vonsattel JP, Aronin N. Aggregation of huntingtin in neuronal intranuclear inclusions and dystrophic neurites in brain. Science 1997;277:1990-1993.
    Dirksen EHC, Cloos J, Braakhuis BJM, Brakenhoff RH, Heck AJR, Slijper M. Human lymphoblastoid proteome analysis reveals a role for the inhibitor of acetyltransferases complex in DNA double-strand break response. Cancer Res 2006;66:1473-1480.
    Dunah AW, Jeong H, Griffin A, Kim YM, Standaert DG, Hersch SM, Mouradian MM, Young AB, Tanese N, Krainc D. Sp1 and TAFII130 transcriptional activity disrupted in early Huntington's disease. Science 2002;296:2238-2243.
    El-Badry O, Helman L, Chatten J Steinberg S, Evans A, Israel M. Insulin-like growth factor II-mediated proliferation of human neuroblastoma. J Clin Invest 1991;87:648-657.
    Evgrafov OV, Mersiyanova I, Irobi J, Van Den Bosch L, Dierick I, Leung CL, Schagina O, Verpoorten N, Van Impe K, Fedotov V, Dadali E, Auer-Grumbach M, Windpassinger C, Wagner K, Mitrovic Z, Hilton-Jones D, Talbot K, Martin JJ, Vasserman N, Tverskaya S, Polyakov A, Liem RK, Gettemans J, Robberecht W, De Jonghe P, Timmerman V. Mutant small heat-shock protein 27 causes axonal Charcot-Marie-Tooth disease and distal hereditary motor neuropathy. Nat Genet 2004;36:602-606.
    Farmer G, Colgan J, Nakatani Y, Manley JL, Prives CA. Functional interaction between p53, the TATA-binding protein (TBP), and TBP-associated factors in vivo. Mol Cell Biol 1996;16:4295-4304.
    Friedman MJ, Shah AG, Fang ZH, Ward EG, Warren ST, Li S, Li XJ. Polyglutamine domain modulates the TBP-TFIIB interaction: implications for its normal function and neurodegeneration. Nat Neurosci 2007;10:1519-1528.
    Friedman MJ, Wang CE, Li XJ, Li S. Polyglutamine expansion reduces the association of TATA-binding protein with DNA and induces DNA binding-independent neurotoxicity. J Biol Chem 2008;283:8283-8290.
    Ferrante RJ, Kubilus JK, Lee J, Ryu H, Beesen A, Zucher B, Smith K, Kowall NW, Ratan RR, Luthicarter R, Hersch SM. Histone deacetylase inhibition by sodium butyrate chemotherapy ameliorates the neurodegenerative phenotype in Huntington's disease mice. J Neurosci 2003;23:9418-9427.
    Fu X, Zhang X, Chang Z. 4,4'-Dianilino-1,1'-binaphthyl-5,5'-sulfonate, a novel molecule having chaperone-like activity. Biochem Biophys Res Commun 2005;329:1087-1093.
    Fujigasaki H, Martin JJ, De Deyn PP, Camuzat A, Deffond D, Stevanin G, Dermaut B, Van Broeckhoven C, Durr A, Brice A. CAG repeat expansion in the TATA box-binding protein gene causes autosomal dominant cerebellar ataxia. Brain 2001;124:1939-1947.
    Fukui H, Morase CT. Extended polyglutamine repeats trigger a feedback loop involving the mitochonfrial complex III, the proteasome and huntingtin aggregates. Hum Mol Genet 2007;16:783-797.
    Gelb DJ, Oliver E, Gilman S. Diagnostic criteria for Parkinson disease. Arch Neurol 1999;56:33-39.
    Gold BG, Voda J, Yu X, Gordon H. The immunosuppressant FK506 elicits a neuronal heat shock response and protects against acrylamide neuropathy. Exp Neurol 2004;187:160-170.
    Gostout B, Liu Q, Sommer SS. "Cryptic" repeating triplets of purines and pyrimidines (cRRY(i)) are frequent and polymorphic: analysis of coding cRRY(i) in the proopiomelanocortin (POMC) and TATA-binding protein (TBP) genes. Am J Hum Genet 1993;52:1182-1190.
    Goswami A, Dikshit P, Mishra A, Nukina N, Jana NR. Expression of expanded polyglutamine proteins suppresses the activation of transcription factor NFkappaB. J Biol Chem 2006;281:37017-37027.
    Grewal SI, Moazed D. Heterochromatin and epigenetic control of gene expression. Science 2003;301:798-802.
    Gu M, Gash MT, Mann VM, Javoy-Agid F, Cooper JM, Schapira AH. Mitochondrial defect in Huntington's disease caudate nucleus. Ann Neurol 1996;39:385-389.
    Handa V, Goldwater D, Stiles D, Cam M, Poy G, Kumari D, Usdin K. Long CGG-repeat tracts are toxic to human cells: implications for carriers of Fragile X premutation alleles. FEBS Lett 2005;579:2702-2708.
    Harjes P, Wanker EE. The hunt for huntingtin function: interaction partners tell many different stories. Trends Biochem Sci 2003;28:425-433.
    Herbst M, Wanker EE (2007) Small molecule inducers of heat-shock response reduce polyQ-mediated huntingtin aggregation. A possible therapeutic strategy. Neurodegener Dis 4:254-260.
    Hernandez D, Hanson M, Singleton A, Gwinn-Hardy K, Freeman J, Ravina B, Doheny D, Gallardo M, Weiser R, Hardy J, Singleton A. Mutation at the SCA17 locus is not a common cause of parkinsonism. Parkinsonism Relat Disord 2003;9:317-320.
    Hockly E, Richon VM, Woodman B, Smith DL, Zhou X, Rosa E, Sathasivam K, Ghazi-Noori S, Mahal A, Lowden PA, Steffan JS, Marsh JL, Thompson LM, Lewis CM, Marks PA, Bates GP. Suberoylanilide hydroxamic acid, a histone deacetylase inhibitor, ameliorates motor deficits in a mouse model of Huntington's disease. Proc Natl Acad Sci USA 2003;100:2041-2046.
    Huang CC, Faber PW, Persichetti F, Mittal V, Vonsattel JP, MacDonald ME, Gusella JF. Amyloid formation by mutant huntingtin: threshold, progressivity and recruitment of normal polyglutamine proteins. Somat Cell Mol Genet 1998;24:217-233.
    Huang SY. Human genetic diseases: Part I: Molecular genetic and epigenetic studies of spinocerebellar ataxia type 8; Part II: Netherton syndrome: molecular analysis of two Taiwanese families. NTNU Master's Thesis, 2006.
    Humbert S, Bryson EA, Cordelieres FP, Connors NC, Datta SR, Finkbeiner S, Greenberg ME, Saudou F. The IGF-1/Akt pathway is neuroprotective in Huntington's disease and involves Huntingtin phosphorylation by Akt. Cell 2002;2:831-837.
    Hung WL. Spinocerebellar ataxia type 8: Genetic analysis of CTG trinucleotide repeat and a cell model study. NTNU Master's Thesis, 2005.
    Imbert G, Trottier Y, Beckmann J, Mandel JL. The gene for the TATA binding protein (TBP) that contains a highly polymorphic protein coding CAG repeat maps to 6q27. Genomics 1994;21:667-668.
    Jain P, Cerone MA, Leblanc AC, Autexier C. Telomerase and neuronal marker status of differentiated NT2 and SK-N-SH human neuronal cells and primary human neurons. J Neurosci Res 2007;85:83-89.
    Joglekar AP, Hay JC. Evidence for regulation of ER/Golgi SNARE complex formation by hsc70 chaperones. Eur J Cell Biol 2005;84:529-542.
    Joubert-Caron R, le Caer J, Montandon F, Poirier F, Imam N, Feuillard J, Bladier D, Rossier J, Caron M. Protein analysis by mass spectrometry and sequence database searching: a proteomic approach to identify human lymphoblastoid cell line proteins. Electrophoresis 2000;21:2566-2575.
    Kakiuchi C, Ishiwata M, Nanko S, Kunugi H, Minabe Y, Nakamura K, Mori N, Fujii K, Umekage T, Tochigi M, Kohda K, Sasaki T, Yamada K, Yoshikawa T, Kato T. Functional polymorphisms of HSPA5: possible association with bipolar disorder. Biochem Biophys Res Commun 2005;336:1136-1143.
    Karpuj MV, Becher MW, Springer JE, Chabas D, Youssef S, Pedotti R, Mitchell D, Steinman L. Prolonged survival and decreased abnormal movements in transgenic model of Huntington disease, with administration of the transglutaminase inhibitor cystamine. Nat Med 2002;8:143-149.
    Kazantsev A, Walker HA, Slepko N, Bear JE, Preisinger E, Steffan JS, Zhu YZ, Gertler FB, Housman DE, Marsh JL, Thompson LM. A bivalent Huntingtin binding peptide suppresses polyglutamine aggregation and pathogenesis in Drosophila. Nat Genet 2002;30:367-376.
    Knuckey NW, Palm D, Primiano M, Epstein MH, Johanson CE. N-acetylcysteine enchances hippocampal neuronal survival after transient forebrain ischemia in rats. Stroke 1995;26:305-310.
    Koide R, Kobayashi S, Shimohata T, Ikeuchi T, Maruyama M, Saito M, Yamada M, Takahashi H, Tsuji S. A neurological disease caused by an expanded CAG trinucleotide repeat in the TATA-binding protein gene: a new polyglutamine disease? Hum Mol Genet 1999;8:2047-2053.
    Kraveka JM, Li L, Bielawski J, Obeid LM, Ogretmen B. Involvement of endogenous ceramide in the inhibition of telomerase activity and induction of morphologic differentiation in response to all-trans-retinoic acid in human neuroblastoma cells. Arch Biochem Biophys 2003;419:110-119.
    Lai MT, Huang KL, Chang WM, Lai YK. Geldanamycin induction of grp78 requires activation of reactive oxygen species via ER stress responsive elements in 9L rat brain tumour cells. Cell Signal 2003;15:585-595.
    Lee LC, Chen CM, Chen FL, Lin PY, Hsiao YC, Wang PR, Su MT, Hsieh-Li HM, Hwang JC, Wu CH, Lee GC, Singh S, Lin Y, Hsieh SY, Lee-Chen GJ, Lin JY. Altered expression of HSPA5, HSPA8 and PARK7 in spinocerebellar ataxia type 17 identified by 2-dimensional fluorescence difference in gel electrophoresis. Clin Chim Acta 2008 accepted.
    Lesort M, Lee M, Tucholski J, Johnson GV. Cystamine inhibits caspase activity. Implications for the treatment of polyglutamine disorders. J Biol Chem 2003;278:3825-3830.
    Lev N, Ickowicz D, Melamed E, Offen D. Oxidative insults induce DJ-1 upregulation and redistribution implications for neuroprotection. NeuroToxic 2008;817:1-9.
    Li SH, Cheng SL, Zhou H, Lam S, Rao M, Li H, Li XJ. Interaction of Huntington's disease protein with transcriptional activator Sp1. Mol cell Biol 2002;22:1277-1287.
    Li SH, Li XJ. Hintingtin-protein interactions and the pathogenesis of Huntington's disease. Trends Genet 2004;20:146-154.
    Lim J, Hao T, Shaw C, Patel AJ, Szabó G, Rual JF, Fisk CJ, Li N, Smolyar A, Hill DE, Barabási AL, Vidal M, Zoghbi HY. A protein-protein interaction network for human inherited ataxias and disorders of Purkinje cell degeneration. Cell 2006;125:801-814.
    Lin CY. Investigation of the neurodegenerative impact of CAG expansionin TBP gene through Taiwan neurodegenerative patients and transgenic mouse model. NTNU Master's Thesis, 2006.
    Lin MT, Beal MF. Mitochondrial dysfunction and oxidative stress in neurodegeneration disease. Nature 2006;443:787-795.
    Lin IS, Wu RM, Lee-Chen GJ, Shan DE, Gwinn-Hardy K. The SCA17 phenotype can include features of MSA-C, PSP and cognitive impairment. Parkinsonism Relat Disord 2007;13:246-249.
    Liu H, Bowes RC 3rd, van de Water B, Sillence C, Nagelkerke JF, Stevens JL. Endoplasmic reticulum chaperones GRP78 and calreticulin prevent oxidative stress, Ca2+ disturbances, and cell death in renal epithelial cells. J Biol Chem 1997;272:21751-21759.
    Lyons WE, George EB, Dawson TM, Steiner JP, Snyder SH. Immunosuppressant FK506 promotes neurite outgrowth in cultures of PC12 cells and sensory ganglia. Proc Natl Acad Sci USA 1994;91:3191-3195.
    Maltecca F, Filla A, Castaldo I, Coppola G, Fragassi NA, Carella M, Bruni A, Cocozza S, Casari G, Servadio A, De Michele G. Intergenerational instability and marked anticipation in SCA-17. Neurology 2003;61:1441-1443.
    Matsumoto G, Kim S, Morimoto RI. Huntingtin and mutant SOD1 form aggregate structures with distinct molecular properties in human cells. J Biol Chem 2006;281:4477-4485.
    McCampbell A, Taylor JP, Taye AA, Robitschek J, Li M, Walcott J, Merry D, CHai Y, Paulson H, Sobue G, Fischbeck KH. CREB-binding protein sequestration by expanded polyglutamine. Hum Mol Genet 2000;9:2197-2202.
    McKhann G, Drachman D, Folstein M, Katzman R, Price D, Stadlan EM. Clinical diagnosis of Alzheimer's disease: report of the NINCDS-ADRDA Work Group under the auspices of Department of Health and Human Services Task Force on Alzheimer's Disease. Neurology 1984;34:939-944.
    Minamiyama M, Katsuno M, Adachi H, Waza M, Sang C, Kobayashi Y, Tanaka F, Doyu M, Inukai A, Makoto M. Sodium butyrate ameliorates phenotypic expression in a transgenic mouse model of spinal and bulbar muscular atrophy. Hum Mol Genet 2004;13:1183-1192.
    Mitsumoto A, Nakagawa Y, Takeuchi A, Okawa K, Iwamatsu A, Takanezawa Y. Oxidized forms of peroxiredoxins and DJ-1 on two-dimensional gels increased in response to sublethal levels of paraquat. Free Radic Res 2001;35:301-310.
    Morishima N, Nakanishi K, Tsuchiya K, Shibata T, Seiwa F. Translocation of Bim to the endoplasmic reticulum (ER) mediates ER stress signaling for activation of caspase 12 during ER stress-induced spoptosis. J Biol Chem 2004;279:50375-50381.
    Nakamura K, Jeong SY, Uchihara T, Anno M, Nagashima K, Nagashima T, Ikeda S, Tsuji S, Kanazawa I. SCA17, a novel autosomal dominant cerebellar ataxia caused by an expanded polyglutamine in TATA-binding protein. Hum Mol Genet 2001;10:1441-1448.
    Novoselova TV, Margulis BA, Novoselov SS, Sapozhnikov AM, van der Spuy J, Cheetham ME, Guzhova IV. Treatment with extracellular HSP70/HSC70 protein can reduce polyglutamine toxicity and aggregation. J Neurochem 2005;94:597-606.
    Nucifora Jr FC, Sasaki M, Peters MF, Huang H, Cooper JK, Yamada M, Takahashi H, Tsuji S, Troncoso J, Dawson VL, Dawson TM, Ross CA. Interference by huntingtin and atrophin-1 with cbp-mediated transcription leading to cellular toxicity. Science 2001;291:2423-2428.
    Oda M, Maruyama H, Komure O, Morino H, Terasawa H, Izumi Y, Imamura T, Yasuda M, Ichikawa K, Ogawa M, Matsumoto M, Kawakami H. Possible reduced penetrance of expansion of 44 to 47 CAG/CAA repeats in the TATA-binding protein gene in spinocerebellar ataxia type 17. Arch Neurol 2004;61:209-212.
    Okazawa H. Polyglutamine diseases: a transcription disorder? Cell Mol Life Sci 2003;60:1427-1439.
    Perez MF, Johnson T, Suzuki M, Fineh JT. Recruitment and the role of nuclear localization in polyglutamine-mediated aggregation. J Cell Biol 1998;143:1457-1470.
    Ravikumar B, Duden R, Rubinsztein DC. Aggregate-prone proteins with polyglutamine and polyalanine expansions are degraded by autophagy. Hum Mol Genet 2002;11:1107-1117.
    Reid SJ, Rees MI, van Roon-Mom WM, Jones AL, MacDonald ME, Sutherland G, During MJ, Faull RL, Owen MJ, Dragunow M, Snell RG. Molecular investigation of TBP allele length: a SCA17 cellular model and population study. Neurobiol Dis 2003;13:37-45.
    Reimertz C, Kogel D, Rami A, Chittenden T, Prehn JH. Gene expression during ER stress-induced apoptosis in neurons: induction of the BH3-only protein Bbc3/PUMA and activation of the mitochondrial apoptosis pathway. J Cell Biol 2003;162:587-597.
    Ren M, Leng Y, Jeong M, Leeds PR, Chuang DM. Valproic acid reduces brain damage induced by transient focal cerebral ischemia in rats: potential roles of histone deacetylase inhibition and heat shock protein induction. J Neurochem 2004;89:1358-1367.
    Riley BE, Orr HT. Polyglutamine neurodegenerative diseases and regulation of transcription: assembling the puzzle. Genes Dev 2006;20:2183-2192.
    Rolfs A, Koeppen AH, Bauer I, Bauer P, Buhlmann S, Topka H, Schols L, Riess O. Clinical features and neuropathology of autosomal dominant spinocerebellar ataxia (SCA17). Ann Neurol 2003;54:367-375.
    Ryu H, Lee J, Olofsson BA, Mwidau A, Dedeoglu A, Escudero M, Flemington E, Azizkhan-Clifford J, Ferrante RJ, Ratan RR. Histone deacetylase inhibitors prevent oxidative neuronal death independent of expanded polyglutamine repeats via an Sp1-dependent pathway. Proc Natl Acad Sci USA 2003;100:4281-4286.
    Sadri-Vakili G, Bouzou B, Benn CL, Kim M, Chawla P, Overland RP, Glajch KE, Xia E, Qiu Z, Hersch SM, Clark TW, Yohrling GJ and Cha JH. Histones associated with downregulated genes are hypo-acetylated in Huntington's disease models. Hum Mol Genet 2007;16:1293-1306.
    Sakahira H, Breuer P, Hayer-Hart MK, Hartl FU. Molecular chaperones as modulators of polyglutamine protein aggregation and toxicity. Proc Natl Acad Sci USA 2002;99:16412-16418.
    Schaffar G, Breuer P, Boteva R, Behrends C, Tzvetkov N, Strippel N, Sakahira H, Siegers K, Hayer-Hartl M, Harl FU. Cellular toxicity of polyglutamine expansion proteins: mechanism of transcription factor deactivation. Mol Cell 2004;15:95-105.
    Schröder M, Kaufman RJ. ER stress and the unfolded protein response. Mutat Res 2005;569:29-63.
    Seipel K, Georgiev O, Gerber HP, Schaffner W. Basal components of the transcription apparatus (RNA polymerase II, TATA-binding protein) contain activation domains: is the repetitive C-terminal domain (CTD) of RNA polymerase II a "portable enhancer domain"? Mol Reprod Dev 1994;39:215-225.
    Shaw G, Morse S, Ararat M, Graham FL. Preferential transformation of human neuronal cells by human adenoviruses and the origin of HEK 293 cells. FASEB J 2002;16:869-871.
    Shen HY, He JC, Wang Y, Huang QY, Chen JF. Geldanamycin induces heat shock protein 70 and protects against MPTP-induced dopaminergic neurotoxicity in mice. J Biol Chem 2005;280:39962-39969.
    Silveira I, Miranda C, Guimaraes L, Moreira MC, Alonso I, Mendonca P, Ferro A, Pinto-Basto J, Coelho J, Ferreirinha F, Poirier J, Parreira E, Vale J, Januario C, Barbot C, Tuna A, Barros J, Koide R, Tsuji S, Holmes SE, Margolis RL, Jardim L, Pandolfo M, Coutinho P, Sequeiros J. Trinucleotide repeats in 202 families with ataxia: a small expanded (CAG)n allele at the SCA17 locus. Arch Neurol 2002;59:623-629.
    Sittler A, Lurz R, Lueder G, Priller J, Lehrach H, Hayer-Hartl MK, Hartl FU, Wanker EE. Geldanamycin activates a heat shock response and inhibits huntingtin aggregation in a cell culture model of Huntington's disease. Hum Mol Genet 2001;10:1307-1315.
    Steffan JS, Kazantsev A, Spastic-Boskovic O, Greenwald M, Zhu YZ, Gohler H, Wanker EE, Bates GP, Housman DE, Thompson LM. The Huntington's disease protein intreracts with p53 and CERB-binding protein and represses transcription. Proc Natl Acad Sci USA 2000;97:6763-6768.
    Steffan JS, Bodai L, Pallos J, Poelman M, McCampbell A, Apostol BL, Kazantsev A, Schmidt, Zhu YZ, Greenwald M, Kurokawa R, Housman DE, Jackson GR, Marsh JL, Thompson LM. Histone deacetylase inhibitors arrest polyglutamine-dependent neurodegeneration in Drosophila. Nature 2001;413:739-743.
    Stevanin G, Fujigasaki H, Lebre AS, Camuzat A, Jeannequin C, Dode C, Takahashi J, San C, Bellance R, Brice A, Durr A. Huntington's disease-like phenotype due to trinucleotide repeat expansions in the TBP and JPH3 genes. Brain 2003;126:1599-1603.
    Sugars KL, Rubinsztein DC. Transcriptional abnormalities in Huntington disease. Trends Genet 2003;19:233-238.
    Suhr ST, Senut MC, Whitelegge JP, Faull KF, Cuiaon DB, Gage FH. Identities of sequestered proteins in aggregates from cells with induced polyglutamine expression. J Cell Biol 2001;153:283-294.
    Sutrias-Grau M, Bianchi ME, Bernués J. High mobility group protein 1 interacts specifically with the core domain of human TATA box-binding protein and interferes with transcription factor IIB within the pre-initiation complex. J Biol Chem 1999;274:1628-1634.
    Swatton JE, Prabakaran S, Karp NA, Lilley KS, Bahn S. Protein profiling of human postmortem brain using 2-dimensional fluorescence difference gel electrophoresis (2-D DIGE). Mol Psychiatry 2004;9:128-143.
    Tagawa K, Marubuchi S, OiML, Enokido Y, Tamura T, Inagaki R, Murata M, Kanazawa I, Wanker EE, Okazawa H. The induction levels of heat shock protein 70 differentiate the vulnerabilities to mutant huntingtin among neuronal subtypes. J Neurosci 2007;27:868-880.
    Taira T, Saito Y, Niki T, Iguchi-Ariga SM, Takahashi K, Ariga H. DJ-1 has a role in antioxidative stress to prevent cell death. EMBO Rep 2004;5:213-218.
    Tansey WP, Herr W. Selective use of TBP and TFIIB revealed by a TATA-TBP-TFIIB array with altered specificity. Science 1997;275:829-831.
    Toda T, Sugimoto M. Proteome analysis of Epstein-Barr virus-transformed B-lymphoblasts and the proteome database. J Chromatography B 2003;787:197-206.
    Taylor JP, Taye AA, Campbell C, Kazemi-Esfarjani P, Fischbeck KH, Min KT. Aberrant histone acetylation, altered transcription, and retinal degeneration in a Drosophila model of polyglutamine disease are rescued by CREB-binding protein. Gene Dev 2003;17:1463-1468.
    Thomas M, Harrell JM, Morishima Y, Peng HM, Pratt WB, Lieberman AP. Pharmacologic and genetic inhibition of hsp90-dependent trafficking reduces aggregation and promotes degradation of the expanded glutamine androgen receptor without stress protein induction. Hum Mol Genet 2006;15:1876-1883.
    Tsai HF, Lin SJ, Li C, Hsieh M. Decreased expression of Hsp27 and Hsp70 in transformed lymphoblastoid cells from patients with spinocerebellar ataxia type 7. Biochem Biophys Res Commun 2005;334:1279-1286.
    Unlu M, Morgan ME, Minden JS. Difference gel electrophoresis: a single gel method for detecting changes in protein extracts. Electrophoresis 1997;18:2071-2077.
    Van Roon-Mom WM, Reid SJ, Jones AL, MacDonald ME, Faull RL, Snell RG. Insoluble TATA-binding protein accumulation in Huntington's disease cortex. Brain Res Mol Brain Res 2002;109:1-10.
    Wang HL, Yeh TH, Chou AH, Kuo YL, Luo LJ, He CY, Huang PC, Li AH. Polyglutamine-expanded ataxin-7 activates mitochondrial apoptotic pathway of cerebellar neurons by upregulating Bax and downregulating Bcl-x(L). Cell Signal 2006;18:541-552.
    Wen FC, Li YH, Tsai HF, Lin CH, Li C, Liu CS, Lii CK, Nukina N, Hsieh M. Down-regulation of heat shock protein 27 in neuronal cells and non-neuronal cells expressing mutant ataxin-3. FEBS Letters 2003;546:307-314.
    Wu YR, Lin HY, Chen CM, Gwinn-Hardy K, Ro LS, Wang YC, Lee SH, Hwang JC, Fang K, Hsieh-Li HM, Li ML, Tung LC, Su MT, Lu KT, Lee-Chen GJ. Genetic testing in spinocerebellar ataxia in Taiwan: expansions of trinucleotide repeats in SCA8 and SCA17 are associated with typical parkinson's disease. Clin Genet 2004;65:209-214.
    Wu YR, Fung HC, Lee-Chen GJ, Gwinn-Hardy K, Ro LS, Chen ST, Hsieh-Li HM, Lin HY, Lin CY, Lin SN, Chen CM. Analysis of polyglutamine-coding repeats in the TATA-binding protein in different neurodegenerative diseases. J Neural Transm 2005;112:539-546.
    Wyttenbach A, Camichael J, Swartz J, Furlong R,A, Narain Y, Rankin J, Rubinsztein DC. Effects of heat shock, hat shock protein 40 (HDJ-2), and proteasome inhibition on protein aggregation in cellular models of Huntington's disease. Proc Natl Acad Sci 2000;97:2898-2903.
    Wyttenbach A, Sauvageot O, Carmichael J, Diaz-Latoud C, Arrigo AP, Rubinsztein DC. Heat shock protein 27 prevents cellular polyglutamine toxicity and suppresses the increase of reactive oxygen species caused by huntingtin. Hum Mol Genet 2002;11:1137-1151.
    Xing X, Lai M, Wang Y, Xu E, Huang Q. Overexpression of glucose-regulated protein 78 in colon cancer. Clin Chim Acta 2006;364:308-315.
    Yamanaka T, Miyazaki H, Oyama F, Kurosawa M, Washizu C, Doi H and Nukina N. Mutant Huntingtin reduces HSP70 expression through the sequestration of NF-Y transcription factor. EMBO J 2008;27:827-839.
    Yanagisawa D, Kitamura Y, Inden M, Takata K, Taniguchi T, Morikawa S, Morita M, Inubushi T, Tooyama I, Taira T, Iguchi-Ariga SM, Akaike A, Ariga H. DJ-1 protects against neurodegeneration caused by focal cerebral ischemia and reperfusion in rats. J Cereb Blood Flow Metab 2008;28:563-578.
    Yuan CX, Gurley WB. Potential targets for HSF1 within the preinitiation complex. Cell Stress Chaperones 2000;5:229-242.
    Zar JH. Biostatistical analysis. 1999 4th Edition. Upper Saddle River, NJ, Prentice-Hall.
    Zhang W, Narayanan M, Friedlander RM. Additive neuroprotective effects of minocycline with creatine in a mouse model of ALS. Ann Neurol 2003;53:267-270.
    Zuhlke C, Hellenbroich Y, Dalski A, Kononowa N, Hagenah J, Vieregge P, Riess O, Klein C, Schwinger E. Different types of repeat expansion in the TATA-binding protein gene are associated with a new form of inherited ataxia. Eur J Hum Genet 2001;9:160-164.
    Zuhlke C, Gehlken U, Hellenbroich Y, Schwinger E, Burk K. Phenotypical variability of expanded alleles in the TATA-binding protein gene. Reduced penetrance in SCA17? J Neurol 2003;250:161-163.

    下載圖示
    QR CODE