簡易檢索 / 詳目顯示

研究生: 蘇易廷
Yi-Ting Su
論文名稱: 低劑量 L-NAME 對耐力訓練大鼠 NOS 表現及耐力性運動表現的影響
The effect of low dosage L-NAME on NOS expression and exercise performance
指導教授: 謝伸裕
Hsieh, Shen-Yu
學位類別: 碩士
Master
系所名稱: 體育學系
Department of Physical Education
論文出版年: 2007
畢業學年度: 95
語文別: 中文
論文頁數: 44
中文關鍵詞: 耐力性運動訓練L-NAME肝醣血壓耐力性運動表現
英文關鍵詞: endurance exercise training, L-NAME, glycogen, blood pressure, endurance exercise performance
論文種類: 學術論文
相關次數: 點閱:207下載:2
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 目的:探討低劑量 L-NAME 及耐力運動訓練對 NOS 表現和耐力性運動表現的影響。方法: Wistar 品系 5 週齡實驗大鼠44隻分兩批,且分為Control組、L-NAME 組、Exercise組及L-NAME + Exercise組。第一批大鼠(每組n=5)實驗處理 4 週後犧牲,分析比目魚肌 nNOS 與 eNOS蛋白及 mRNA 表現。第二批大鼠(每組n=6)實驗處理八週後犧牲,檢比目魚肌肝醣含量及檸檬酸合成酶活性。實驗期間每週定期測量其尾壓,並於第五週及第八週進行耐力性運動訓練測試。實驗數據皆以平均數 ± 標準誤表示,以單因子獨立樣本變異數分析檢定,並以 Tukey 做事後比較,統計水準為 p< .05。結果: nNOS 蛋白表現, L-NAME+Exercise 組(473.3 ± 123.2%)顯著高於 Control 組(100.0 ± 0.0%)。eNOS 蛋白表現, L-NAME+Exercise 組(372.0 ± 84.2%)及Exercise 組(344.5 ± 59.1%)顯著高於 Control 組(100.0 ± 0.0%)。eNOS mRNA 表現,L-NAME 組(22.4 ± 3.8%)及 Exercise 組(23.6 ± 3.5%)顯著高於 Control 組(7.7 ± 1.1%),而 L-NAME+Exercise 組(49.3 ± 3.1%)則顯著高於其他三組。比目魚肌肝醣含量,Exercise 組(2.58 ± 0.5 mg/g)及 L-NAME+Exercise 組(2.77 ± 0.3 mg/g)皆顯著高於Control 組(0.8 ± 0.1 mg/g)。檸檬酸合成酶活性中,Exercise 組(47.6 ± 4.8 μmole/mg/min,n=5)及 L-NAME+Exercise 組(41.9 ± 5.6 μmole/mg/min,n=5)皆顯著高於Control 組(20.3 ± 3.8 μmole/mg/min,n=5)及 L-NAME 組(37.3 ± 5.0 μmole/mg/min,n=5)五週耐力性運動表現, Exercise 組(101.7 ± 12分鐘)及L-NAME+Exercise 組(78.0 ± 16.5分鐘)顯著高於Control 組(29.8 ± 10.6分鐘)及 L-NAME 組(29.5 ± 6.9 分鐘)。八週耐力性運動表現,Exercise 組(98.3 ± 6.8分鐘)及L-NAME+Exercise 組(88.0 ± 4.8分鐘)顯著高於Control 組(11.5 ± 3.4分鐘)及 L-NAME 組(13.7 ± 3.5分鐘)。結論:低劑量 L-NAME 配合耐力性運動訓練,能明顯增強 eNOS 及 nNOS 蛋白表現。此現象雖然可能增加骨骼肌中 NO 產量,但卻無法顯著增加骨骼肌肝醣的儲存量及檸檬酸合成酶活性,且因 NO 對有氧代謝系統的抑制作用,反而不利於耐力性運動表現。

    Purpose: To investigate the effect of low dosage L-NAME and endurance exercise training on NOS expression and endurance exercise performance. Methods: Forty-four male Wistar rats (five weeks old) were randomly divided into two divisions, and then further divided into four groups: Control, L-NAME, Exercise and L-NAME+Exercise. First division rats (each group n=5) were treated for 4 weeks and sacrificed to analyze the protein expression and mRNA expression for nNOS and eNOS of the soleus. Second division rat (each group n=6) were treated for 8 week and sacrificed to analyze the glycogen content and citrate synthase activity of the soleus. All numerical data were expressed in mean ± SEM. Independent one way ANOVA was used to evaluate the mean difference. The significance level was set at p< .05。Results: The nNOS protein expression of L-NAME+Exercise group (473.3 ± 123.2%)was significantly higher than Control group(100.0 ± 0.0%)。The eNOS protein expression of L-NAME+Exercise group (372.0 ± 84.2%) and Exercise group (344.5 ± 59.1%) were significantly higher than Control group(100.0 ± 0.0%). The eNOS mRNA expression of L-NAME group (22.4 ± 3.8%) and Exercise group (23.6 ± 3.5%) were significantly higher than Control group(7.7 ± 1.1%); and L-NAME+Exercise group (49.3 ± 3.1%) was significantly higher than all other groups. Soleus muscle glycogen content of Exercise group (2.58 ± 0.5 mg/g)and L-NAME+Exercise group (2.77 ± 0.3 mg/g) were significantly higher than Control group (0.8 ± 0.1 mg/g). Citrate synthase activity of Exercise group (47.6 ± 4.8 μmole/mg/min) and L-NAME+Exercise group (41.9 ± 5.6 μmole/mg/min) were significantly higher than Control group (20.3 ± 3.8 μmole/mg/min) and L-NAME group (37.3 ± 5.0 μmole/mg/min). Fifth week endurance exercise performance of Exercise group (101.7 ± 12 min) and L-NAME+Exercise group (78.0 ± 16.5 min) were significantly higher than Control group (29.8 ± 10.6 min) and L-NAME group (29.5 ± 6.9 min). Eighth week endurance exercise performance of Exercise group (98.3 ± 6.8 min) and L-NAME+Exercise group (88.0 ± 4.8 min) were significantly higher than Control group (11.5 ± 3.4 min) and L-NAME group (13.7 ± 3.5 min). Conclusions: The rats treated with low dosage L-NAME and endurance performance will significantly increased eNOS and nNOS protein expression. Although NO production of skeletal muscle increased, but could not increasing glycogen storage and citrate synthase activity of skeletal muscle. Also, NO will inhibits oxidation system to decrease endurance exercise performance.

    前序部份 口試委員與系主任簽字證書……………………………………………………………………………………… i 授權書………………………………………………………………………………………………………………………… ii 中文摘要……………………………………………………………………………………………………………………… iii 英文摘要……………………………………………………………………………………………………………………… iv 謝誌……………………………………………………………………………………………………………………………… v 目次……………………………………………………………………………………………………………………………… vi 圖次……………………………………………………………………………………………………………………………… viii 本文部份 第壹章 緒論………………………………………………………………………………………………………………… 1 一、前言………………………………………………………………………………………………………………… 1 二、骨骼肌與 NOS……………………………………………………………………………………………… 3 三、NO 對骨骼肌能量代謝的影響……………………………………………………………………… 5 四、NO 與有氧運動能力……………………………………………………………………………………… 7 五、研究目的………………………………………………………………………………………………………… 9 第貳章 相關文獻探討……………………………………………………………………………………………… 10 一、運動對 NOS 蛋白表現及活性相關研究……………………………………………………… 10 二、NO 對 eNOS 的反饋作用…………………………………………………………………………… 11 三、L-NAME 對NOS 活性及生理的影響………………………………………………………… 11 四、NO 對骨骼肝醣含量的影響………………………………………………………………………… 12 五、本章總結………………………………………………………………………………………………………… 13 第參章 實驗方法………………………………………………………………………………………………………… 15 一、實驗設計………………………………………………………………………………………………………… 15 二、動物耐力性運動訓練及給藥模式………………………………………………………………… 17 三、蛋白表現分析-西方轉漬法…………………………………………………………………………… 18 四、mRNA表現分析-反轉錄連鎖聚合反應………………………………………………………… 19 五、檸檬酸合成酶活性分析………………………………………………………………………………… 21 六、肝醣測定………………………………………………………………………………………………………… 22 七、耐力運動表現測試及檢體採集……………………………………………………………………… 23 八、統計方法………………………………………………………………………………………………………… 23 第肆章 結果 24 一、nNOS 蛋白表現…………………………………………………………………………………………… 24 二、eNOS 蛋白表現…………………………………………………………………………………………… 25 三、nNOS mRNA 表現………………………………………………………………………………………… 26 四、eNOS mRNA 表現………………………………………………………………………………………… 27 五、平均尾動脈壓………………………………………………………………………………………………… 28 六、比目魚肌肝醣含量………………………………………………………………………………………… 29 七、比目魚肌檸檬酸合成酶活性………………………………………………………………………… 30 八、第5週耐力性運動表現………………………………………………………………………………… 31 九、第8週耐力性運動表現………………………………………………………………………………… 32 第伍章 討論與結論 33 一、耐力性運動訓練對大鼠比目魚肌及 eNOS 及nNOS的影響……………………… 33 二、低劑量 L-NAME 對大鼠比目魚肌及 nNOS 及 eNOS 的影響………………… 34 三、低劑量 L-NAME 對大鼠尾壓的影響………………………………………………………… 36 四、低劑量 L-NAME 對大鼠比目魚肌肝醣及檸檬酸合成酶的影響………………… 37 五、低劑量 L-NAME 對耐力性運動表現的影響……………………………………………… 38 六、結論………………………………………………………………………………………………………………… 39 引用文獻……………………………………………………………………………………………………………………… 40 後篇部份 個人小傳……………………………………………………………………………………………………………………… 45

    Amaral, S. L., Papanek, P. E., & Greene, A. S. (2001). Angiotensin II and VEGF are involved in angiogenesis induced by short-term exercise training. American Journal of Physiology-Heart and Circulatory Physiology, 281(3), 1163-1169.
    Andersen, P. (1975). Capillary density in skeletal muscle of man. Acta Physiologica Scandinavica, 95(2), 203-205.
    Aoi, W., Naito, Y., & Yoshikawa, T. (2006). Exercise and functional foods. Nutrition Journal, 5, 15.
    Asano, M., Kaneoka, K., Nomura, T., Asano, K., Sone, H., Tsurumaru, K., et al. (1998). Increase in serum vascular endothelial growth factor levels during altitude training. Acta Physiologica Scandinavica, 162(4), 455-459.
    Balon, T. W., & Nadler, J. L. (1994). Nitric-oxide release is present from incubated skeletal-muscle preparations. Journal of Applied Physiology, 77(6), 2519-2521.
    Balon, T. W., & Nadler, J. L. (1997). Evidence that nitric oxide increases glucose transport in skeletal muscle. Journal of Applied Physiology, 82(1), 359-563.
    Baron, A. D. (1994). Hemodynamic actions of insulin. American Journal of Physiology, 267(2), 187-202.
    Baron, A. D. (1996). The coupling of glucose metabolism and perfusion in human skeletal muscle - The potential role of endothelium-derived nitric oxide. Diabetes, 45, 105-109.
    Bogdan, C. (2001). Nitric oxide and the regulation of gene expression. Trends in Cell Biology, 11(2), 66-75.
    Brodal, P., Ingjer, F., & Hermansen, L. (1977). Capillary supply of skeletal muscle fibers in untrained and endurance-trained men. American Journal of Physiology, 232(6), 705-712.
    Chand, N., & Altura, B. M. (1981). Acetylcholine and bradykinin relax intrapulmonary arteries by acting on endothelial cells: Role in lung vascular diseases. Science, 213(4514), 1376-1379.
    Clementi, E., Brown, G. C., Feelisch, M., & Moncada, S. (1998). Persistent inhibition of cell respiration by nitric oxide: Crucial role of S-nitrosylation of mitochondrial complex I and protective action of glutathione. Proceedings of the National Academy of Sciences of the United States of America, 95(13), 7631-7636.
    Coggan, A. R., Abduljalil, A. M., Swanson, S. C., Earle, M. S., Farris, J. W., Mendenhall, L. A., et al. (1993). Muscle metabolism during exercise in young and older untrained and endurance-trained men. Journal of Applied Physiology, 75(5), 2125-2133.
    Dyke, C. K., Proctor, D. N., Dietz, N. M., & Joyner, M. J. (1995). Role of nitric oxide in exercise hyperaemia during prolonged rhythmic handgripping in humans. Journal of Physiology, 488 (1), 259-265.
    Frandsen, U., Hoffner, L., Betak, A., Saltin, B., Bangsbo, J., & Hellsten, Y. (2000). Endurance training does not alter the level of neuronal nitric oxide synthase in human skeletal muscle. Journal of Applied Physiology, 89(3), 1033-1038.
    Gerova, M. (2000). Nitric oxide-compromised hypertension: facts and enigmas. Physiological Research, 49(1), 27-35.
    Greenberg, B., Rhoden, K., & Barnes, P. J. (1987). Endothelium-dependent relaxation of human pulmonary arteries. American Journal of Physiology, 252(2 Pt 2), H434-438.
    Grozdanovic, Z., Nakos, G., Dahrmann, G., Mayer, B., & Gossrau, R. (1995). Species-independent expression of nitric oxide synthase in the sarcolemma region of visceral and somatic striated muscle fibers. Cell and Tissue Research, 281(3), 493-499.
    Grumbach, I. M., Chen, W., Mertens, S. A., & Harrison, D. G. (2005). A negative feedback mechanism involving nitric oxide and nuclear factor kappa-B modulates endothelial nitric oxide synthase transcription. Journal of Molecular and Cellular Cardiology, 39(4), 595-603.
    Gustafsson, T., Puntschart, A., Kaijser, L., Jansson, E., & Sundberg, C. J. (1999). Exercise-induced expression of angiogenesis-related transcription and growth factors in human skeletal muscle. American Journal of Physiology-Heart and Circulatory Physiology, 276(2), H679-H685.
    Hakim, A. A., Curb, J. D., Petrovitch, H., Rodriguez, B. L., Yano, K., Ross, G. W., et al. (1999). Effects of walking on coronary heart disease in elderly men - The Honolulu Heart Program. Circulation, 100(1), 9-13.
    Higaki, Y., Hirshman, M. F., Fujii, N., & Goodyear, L. J. (2001). Nitric oxide increases glucose uptake through a mechanism that is distinct from the insulin and contraction pathways in rat skeletal muscle. Diabetes, 50(2), 241-247.
    Hirai, T., Visneski, M. D., Kearns, K. J., Zelis, R., & Musch, T. I. (1994). Effects of NO synthase inhibition on the muscular blood-flow response to treadmill exercise in rats. Journal of Applied Physiology, 77(3), 1288-1293.
    Hudlicka, O., Brown, M., & Egginton, S. (1992). Angiogenesis in skeletal and cardiac-muscle. Physiological Reviews, 72(2), 369-417.
    Husain, K. (2003). Interaction of exercise training and chronic NOS inhibition on blood pressure, heart rate, NO and antioxidants in plasma of rats. Pathophysiology, 10(1), 47-56.
    Ji, L. L., Gomez-Cabrera, M. C., Steinhafel, N., & Vina, J. (2004). Acute exercise activates nuclear factor (NF)-kappaB signaling pathway in rat skeletal muscle. The FASEB Journal, 18(13), 1499-1506.
    Kaliman, P., Canicio, J., Testar, X., Palacin, M., & Zorzano, A. (1999). Insulin-like growth factor-II, phosphatidylinositol 3-kinase, nuclear factor-kappa B and inducible nitric-oxide synthase define a common myogenic signaling pathway. Journal of Biological Chemistry, 274(25), 17437-17444.
    Kobzik, L., Reid, M. B., Bredt, D. S., & Stamler, J. S. (1994). Nitric-oxide in skeletal-muscle. Nature, 372(6506), 546-548.
    Kobzik, L., Stringer, B., Balligand, J. L., Reid, M. B., & Stamler, J. S. (1995). Endothelial type nitric oxide synthase in skeletal muscle fibers: Mitochondrial relationships. Biochemical and Biophysical Research Communications, 211(2), 375-381.
    Lau, K. S., Grange, R. W., Isotani, E., Sarelius, I. H., Kamm, K. E., Huang, P. L., et al. (2000). nNOS and eNOS modulate cGMP formation and vascular response in contracting fast-twitch skeletal muscle. Physiological Genomics, 2(1), 21-27.
    Lemon, P. W., & Mullin, J. P. (1980). Effect of initial muscle glycogen levels on protein catabolism during exercise. Journal of Applied Physiology, 48(4), 624-629.
    Lin, C. C., Lee, W. Y., Lee, S. H., Chi, H. C., Lin, M. N., & Hsu, M. W. (2003). Prolonged L-NAMEtreatment enhances eNOS expression of skeletal muscle in trained rats. Medicine & Science in Sport & Exercise, 35(5), s94.
    Lin, C. C., & Su, Y. T. (2004). Low dosage treatment of L-NAME may shift glycogen storage location in trained rats. Medicine and Science in Sports and Exercise, 36(5), s177.
    Marshall, H. E., Hess, D. T., & Stamler, J. S. (2004). S-nitrosylation: Physiological regulation of NF-kB. Proceedings of the National Academy of Sciences of The United States of America, 101(24), 8841-8842.
    Matthews, J. R., Botting, C. H., Panico, M., Morris, H. R., & Hay, R. T. (1996). Inhibition of NF-kappaB DNA binding by nitric oxide. Nucleic Acids Research, 24(12), 2236-2242.
    Maxwell, A. J., Ho, H. V., Le, C. Q., Lin, P. S., Bernstein, D., & Cooke, J. P. (2001). L-Arginine enhances aerobic exercise capacity in association with augmented nitric oxide production. Journal of Applied Physiology, 90(3), 933-938.
    Maxwell, A. J., Schauble, E., Bernstein, D., & Cooke, J. P. (1998). Limb blood flow during exercise is dependent on nitric oxide. Circulation, 98(4), 369-374.
    McConell, G. K. (2007). Effects of L-arginine supplementation on exercise metabolism. Current Opinion in Clinical Nutrition and Metabolic Care, 10(1), 46-51.
    Mccully, K. K., Fielding, R. A., Evans, W. J., Leigh, J. S., & Posner, J. D. (1993). Relationships between in-vivo and in-vitro measurements of metabolism in young and old human calf muscles. Journal of Applied Physiology, 75(2), 813-819.
    Mohr, S., Stamler, J. S., & Brune, B. (1996). Posttranslational modification of glyceraldehyde-3-phosphate dehydrogenase by S-nitrosylation and subsequent NADH attachment. Journal of Biological Chemistry, 271(8), 4209-4214.
    Moncada, S., & Higgs, A. (1993). The L-arginine-nitric oxide pathway. New England Journal of Medicine, 329(27), 2002-2012.
    Myers, J., Prakash, M., Froelicher, V., Do, D., Partington, S., & Atwood, J. E. (2002). Exercise capacity and mortality among men referred for exercise testing. New England Journal of Medicine, 346(11), 793-801.
    Nakane, M., Schmidt, H. H., Pollock, J. S., Forstermann, U., & Murad, F. (1993). Cloned human brain nitric oxide synthase is highly expressed in skeletal muscle. FEBS Letters, 316(2), 175-180.
    Nesher, R., Karl, I. E., & Kipnis, D. M. (1985). Dissociation of effects of insulin and contraction on glucose transport in rat epitrochlearis muscle. American Journal of Physiology, 249(3), 226-232.
    Nielsen, J. N., Derave, W., Kristiansen, S., Ralston, E., Ploug, T., & Richter, E. A. (2001). Glycogen synthase localization and activity in rat skeletal muscle is strongly dependent on glycogen content. Journal of Physiology, 531(Pt 3), 757-769.
    Perseghin, G., Price, T. B., Petersen, K. F., Roden, M., Cline, G. W., Gerow, K., et al. (1996). Increased glucose transport-phosphorylation and muscle glycogen synthesis after exercise training in insulin-resistant subjects. New England Journal of Medicine, 335(18), 1357-1362.
    Reiser, P. J., Kline, W. O., & Vaghy, P. L. (1997). Induction of neuronal type nitric oxide synthase in skeletal muscle by chronic electrical stimulation in vivo. Journal of Applied Physiology, 82(4), 1250-1255.
    Roberts, C. K., Barnard, R. J., Jasman, A., & Balon, T. W. (1999). Acute exercise increases nitric oxide synthase activity in skeletal muscle. American Journal of Physiology-Endocrinology and Metabolism, 277(2), 390-394.
    Sessa, W. C., Pritchard, K., Seyedi, N., Wang, J., & Hintze, T. H. (1994). Chronic exercise in dogs increases coronary vascular nitric-oxide production and endothelial-cell nitric-oxide synthase gene-expression. Circulation Research, 74(2), 349-353.
    Sesso, H. D., Paffenbarger, R. S., & Lee, I. M. (2000). Physical activity and coronary heart disease in men - The Harvard Alumni Health Study. Circulation, 102(9), 975-980.
    Shen, W. Q., Zhang, X. P., Zhao, G., Wolin, M. S., Sessa, W., & Hintze, T. H. (1995). Nitric-Oxide production and NO synthase gene-expression contribute to vascular regulation during exercise. Medicine & Science in Sports & Exercise, 27(8), 1125-1134.
    Spina, R. J., Chi, M. M. Y., Hopkins, M. G., Nemeth, P. M., Lowry, O. H., & Holloszy, J. O. (1996). Mitochondrial enzymes increase in muscle in response to 7-10 days of cycle exercise. Journal of Applied Physiology, 80(6), 2250-2254.
    Thayer, K. A., Melnick, R., Burns, K., Davis, D., & Huff, J. (2005). Fundamental flaws of hormesis for public health decisions. Environmental Health Perspectives, 113(10), 1271-1276.
    Thompson, M., Becker, L., Bryant, D., Williams, G., Levin, D., Margraf, L., et al. (1996). Expression of the inducible nitric oxide synthase gene in diaphragm and skeletal muscle. Journal of Applied Physiology, 81(6), 2415-2420.
    Tidball, J. G., Lavergne, E., Lau, K. S., Spencer, M. J., Stull, J. T., & Wehling, M. (1998). Mechanical loading regulates NOS expression and activity in developing and adult skeletal muscle. American Journal of Physiology. Cell Physiology, 275(1), 260-266.
    Verges, S., Flore, P., Favre-Juvin, A., Levy, P., & Wuyam, B. (2005). Exhaled nitric oxide during normoxic and hypoxic exercise in endurance athletes. Acta Physiologica Scandinavica, 185(2), 123-131.
    Wilson, J. R., & Kapoor, S. (1993). Contribution of endothelium-derived relaxing factor to exercise-induced vasodilation in humans. Journal of Applied Physiology, 75(6), 2740-2744.
    Wolosker, H., Panizzutti, R., & Engelender, S. (1996). Inhibition of creatine kinase by S-nitrosoglutathione. FEBS Letters, 392(3), 274-276.

    QR CODE