研究生: |
許桀 Jie Hsu |
---|---|
論文名稱: |
高時空解析度衛星降雨推估在台灣地區的特性與誤差分析 Evaluation of high temporal and spatial resolution satellite rainfall estimates over Taiwan |
指導教授: | 陳正達 |
學位類別: |
碩士 Master |
系所名稱: |
地球科學系 Department of Earth Sciences |
論文出版年: | 2020 |
畢業學年度: | 108 |
語文別: | 中文 |
論文頁數: | 74 |
中文關鍵詞: | 季節 、日循環 、颱風降雨 、午後對流 |
英文關鍵詞: | GSMaP |
DOI URL: | http://doi.org/10.6345/NTNU202000125 |
論文種類: | 學術論文 |
相關次數: | 點閱:186 下載:25 |
分享至: |
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
本研究將評估GSMaP (Global Satellite Mapping of Precipitation)各個版本衛星資料反演台灣不同季節與日循環的降雨表現能力,並根據不同的降雨類型(颱風降雨、午後對流)探討GSMaP衛星資料的差異。經分析後發現季節下的空間掌握分布能力以GSMaP MVK V5在濕季(梅雨季、夏季、秋季)表現最佳,但是時常有低估的情況發生。另外GSMaP RNL與GSMaP MVK V6普遍存在高估的情形,所有版本中以GSMaP MVK V7的降雨量估計較接近地面觀測資料。日循環的部分,衛星資料與地面觀測資料在乾季的降雨量差異皆不大,但是對於時序變化表現不佳,濕季則是每個版本皆有掌握到一日內最大降雨時段發生在午後,其中以GSMaP MVK V7對於梅雨季與夏季的時序變化表現最優越。GSMaP RNL與GSMaP MVK V6在濕季的清晨時段有相當嚴重的高估情形,尤其以夏季最為明顯,經分析後發現GSMaP RNL與GSMaP MVK V6清晨時段高估主要來自於某些颱風的降雨。
第二部分以探討降雨類型為主,分為颱風降雨(Tropical Cyclones Precipitation, TCP)與午後對流(Convection Afternoon Precipitaion, CAP)兩種降雨類型,因衛星資料年份不同,所以分成兩組比較(第一組: GSMaP RNL與GSMaP MVK V5,第二組: GSMaP MVK V6與GSMaP MVK V7)。在颱風降雨(TCP)中,以GSMaP MVK V7的表現最佳,不但在空間分布有一定的掌握外,在所有GSMaP版本中針對降雨量估計存在著最小的誤差。午後對流(CAP)中,即使各版本對於平坦或沿海區域的掌握較好,但是時有低估的狀況發生,且對於每小時日循環降雨貢獻掌握存在一定的極限。
已知在不同季節下,不同GSMaP版本的表現皆不相同外,不同降雨類型的表現也不盡相同,但是從季節、降雨類型的表現中可以發現GSMaP MVK V7的降雨量估計為所有版本中最穩定的。衛星資料的降雨估計仍存在一定的極限,因此在未來需再針對其他天氣型態或降雨類型做更多的評估,以利使用者在使用GSMaP資料評估台灣時有一定的參考依據。
This study will evaluate rainfall performance of different seasons, diurnal cycles and rainfall types over Taiwan of each GSMaP version in first part. In the second part, we will discuss the performance of each GSMaP version in different rainfall types such as Tropical Cyclones Precipitation (TCP)、Convection Afternoon Precipitaion (CAP). After analysis, although we found that GSMaP MVK V5 had the best spatial distribution in wet season (MJ、JA、SO) of all GSMaP versions but it always underestimated observation data (Gridded Rain Gauge Data). In wet season, GSMaP RNL and GSMaP MVK V6 are always overestimated, GSMaP MVK V7 had the best rainfall estimation in wet season. In diurnal cycle part, each GSMaP version had low bias in dry season, and they can captured maximum rainfall occurs in afternoon of the day during wet season. Especially, GSMaP MVK V7 had the best timing change in MJ and JA. Among them, GSMaP RNL and GSMaP MVK V6 are severe overestimated over southwestern Taiwan in the morning. However, it has been known that overestimation is mainly caused by some TCP events.
In the second part, we mainly discuss CAP and TCP these two rainfall types. Due to GSMaP data had different period in each version. We split two teams : (1) GSMaP RNL and GSMaP MVK V5. (2) GSMaP MVK V6 and GSMaP MVK V7. In TCP part, GSMaP MVK V7 had the best spatial distribution and rainfall estimation in all versions. In CAP part, although all GSMaP version were underestimation, they can captured rainfall in flat and coast area. We know that GSMaP data were poor at perform timing changes in CAP hourly contribution.
For all we know, GSMaP had different perform in each version, but we can know GSMaP MVK V7 had most stable rainfall estimation in seasonal and rainfall types. It illustrated that satellite products can’t perfect to capture rainfall truly, so we need to assessment other rainfall types in the future. It can provide GSMaP user for a reference.
林和駿、洪致文,2013:以台灣分區雨量指數分析百年來降雨變化。102年天氣分析與預報研討會。台北,中央氣象局。
林品芳、張保亮、周仲島,2012:弱綜觀環境下台灣午後對流特徵及其客觀預報。大氣科學,40,77-108。
陳思穎、黃婉如,2017:TRMM、CMORPH、PERSIANN 三組衛星資料對台灣降雨日變化特色的表現能力評估。大氣科學,45,167–191。
盧孟明、卓盈旻、曾于恆、徐堂家、李清滕、李昀靜、李思瑩,2011:台灣氣候變遷科學報告 2011。207–214。
Chen, C. S., and Y. L. Chen, 2003: The rainfall characteristics of Taiwan. Monthly Whether Review, 131, 1323–1341.
Chen, T. C., M. C. Yen, J. C. Hsieh, and R. W. Arritt, 1999: Diurnal and seasonal variations of the rainfall measured by the Automatic Rainfall and Meteorological Telemetry System in Taiwan. Bulletin of the American Meteorological Society, 80, 2299–2312.
Chokngamwong, R., and L.S. Chiu, 2008: Thailand daily rainfall and comparison with TRMM products. Journal of Hydrometeorology, 9 (2), 256–266.
Derin, Y., Yilmaz, K.K., 2014. Evaluation of multiple satellite-based precipitation products over complex topography. Journal of Hydrometeorology, 15, 1498–1516.
Dinku, T., Ceccato, P., Grover‐Kopec E., Lemma M., Connor S. J., and Ropelewski, C. F., 2007: Validation of satellite rainfall products over East Africa’s complex topography. International Journal of Remote Sensing, 28, 1503–1526.
Dinku, T., F. Ruiz, S. Connor, and P. Ceccato, 2009: Validation and Intercomparison of Satellite Rainfall Estimates over Colombia. Journal of Applied Meteorology and Climatology, 49, 1004–1014.
Dinku, T., Chidzambwa, S., Ceccato, P., Connor, S.J., and Ropelewski, C.F., 2008: Validation of high-resolution satellite rainfall products over complex terrain in Africa. International Journal of Remote Sensing, 29, 4097–4110.
Huang, W. R., and J. C. L. Chan, 2014: Dynamical downscaling forecasts of Western North Pacific tropical cyclone genesis and landfall, Climate Dynamics, 42, 2227–2237.
Huang, W. R., and K. C. Chen, 2015: Trends in pre-summer frontal and diurnal rainfall activities during 1982–2012 over Taiwan and Southeast China: Characteristics and possible causes, International Journal of Climatology, 35, 2608–2619.
Huang, W. R., Y. H. Chang, C. T. Cheng, H. H. Hsu, C. Y. Tu and A. Kitoh, 2016a: Summer Convective Afternoon Rainfall Simulation and Projection using WRF Driven by Global Climate Model. Part I: over Taiwan. Terrestrial atmospheric and oceanic sciences, in press.
Huang, W. R., Y. H. Chang, H. H. Hsu, C. T. Cheng, and C. Y. Tu, 2016: Dynamical downscaling simulation and future projection of summer rainfall in Taiwan: Contributions from different types of rain events, Journal of Geophysical Research: Atmospheres, 121, 13,973–13,988.
Huang, W.-R., Y.-H. Chang, H.-H. Hsu, C.-T. Cheng, and C.-Y. Tu, 2016b: Summer Convective Afternoon Rainfall Simulation and Projection using WRF Driven by Global Climate Model. Part II: over South China and Luzon. Terrestrial atmospheric and oceanic sciences, in press.
Huang, W. R., and S. Y. Wang, 2014: Impact of land-sea breezes at different scales on the diurnal rainfall in Taiwan. Climate Dynamics, 43, 1951–1963.
Hur, J., S. V. Raghavan, N. S. Nguyen, and S. Y. Liong, 2016: Evaluation of High-resolution Satellite Rainfall Data over Singapore. Procedia Engineering, 154, 158–167.
Kerns, B. W. J., Y. L. Chen, and M. Y. Chang, 2010: The diurnal cycle of winds, rain, and clouds over Taiwan during the mei-yu, summer, and autumn rainfall regimes. Mon. Wea. Rev., 138, 497–516.
Kirstetter, O.S., 2018: Evaluation of diurnal variation of GPM IMERG derived summer precipitation over the contiguous US using MRMS data. Quarterly Journal of the Royal Meteorological Society, 144, 270–281.
Kishtawal, C. M., and T. N. Krishnamurti, 2001: Diurnal variation of summer rainfall over Taiwan and its detection using TRMM observations. Journal of Applied Meteorology, 40, 331–344.
Kubota, T., and Coauthors, 2007: Global precipitation map using satelliteborne microwave radiometers by the GSMaP Project: Production and validation. IEEE Transactions on Geoscience and Remote Sensing, 45, 2259–2275.
Kummerow, C., W. Barnes, T. Kozu., J. Shiue, and J. Simpson, 1998: The Tropical Rainfall Measurement Mission (TRMM) sensor package. Journal of Atmospheric and Ocean Technology, 15, 809-817.
Kwon, E. H., B. J. Sohn, D. E. Chang, M. H. Ahn, and S. Yang, 2008: Use of numerical forecasts for improving TMI rain retrievals over the mountainous area in Korea. Journal of Applied Meteorology, 47, 1995–2007.
Lin, P. F., P. L. Chang, B. J. D. Jou, J. W. Wilson, and R. D. Roberts, 2011: Warm season afternoon thunderstorm characteristics under weak synoptic-scale forcing over Taiwan island. Weather and Forecasting, 26, 44–60.
McPherson, R. D., 1970: A numerical study of the effect of a coastal irregularity on the sea breeze. Journal of Applied Meteorology, 9, 767–777.
Negri, A.J., Adler, R.F., 1993. An Intercomparison of three satellite infrared rainfall techniques over Japan and surrounding waters. Journal of Applied Meteorology, 32, 357–373.
Nesbitt, S. W., and E. J. Zipser, 2003: The diurnal cycle of rainfall and convective intensity according to three years of TRMM measurements. Journal of Climate, 16, 1456–1475.
Prakash, S., A. K. Mitra, E. N. Rajagopal, and D. S. Pai, 2015: Assessment of TRMM-based TMPA-3B42 and GSMaP precipitation products over India for the peak southwest monsoon season. International Journal of Climatology, 36, 1614–1631.
Setiawati, M. D., and F. Miura, 2016: Evaluation of GSMaP Daily Rainfall Satellite Data for Flood Monitoring: Case Study—Kyushu Japan. Journal of Geoscience and Environment Protection, 4, 101–117.
Setiawati, M. D., F. Miura, and P. Aryastana, 2013: Verification of Hourly GSMaP Rainfall Estimates during the Flood Events in Kumamoto Prefecture, Japan. 34th Asian Conference on Remote Sensing 2013, ACRS 2013., 4, 3542–3549.
Seto, S., 2009: An Evaluation of Overland Rain Rate Estimates by the GSMaP and GPROF Algorithm: The Role of Lower Frequency Channels. Journal of Meteorological Society, 67, 183–20.
Shige, S., Kida, S., Ashiwake, H., Kubota, T., Aonashi, K., 2013. Improvement of TMI rain retrievals in mountainous areas. Journal of Applied Meteorology and Climatology, 52, 242–254.
Shrestha, M. S., K. Takara, , T. Kubota, and S. R. Bajracharya, 2011: Verification of GSMaP Rainfall Estimates over the Central Himalayas. Journal of Japan Society of Civil Engineers, 67, I_37-I_42.
Sohn, B. J., H. J. Han, and E. K. Seo, 2010: Validation of satellite-based high-resolution rainfall products over the Korean peninsula using data from a dense rain gauge network. Journal of Applied Meteorology, 49, 701–714.
Sohn, B. J., G. H. Ryu, H. J. Song, and M. L. Ou, 2013: Characteristic features of warm-type rain producing heavy rainfall over the Korean peninsula inferred from TRMM measurements. Monthly Whether Review, 141, 3873–3888.
Su, F., Y. Hong, and D. P. Lettenmaier, 2008: Evaluation of TRMM Multisatellite Precipitation Analysis (TMPA) and its utility in hydrologic prediction in the La Plata Basin. Journal of Hydrometeorology, 9, 622–640.
Tan, M.L., Ibrahim, A.L., Duan, Z., Cracknell, A.P., and Chaplot, V., 2015: Evaluation of six high-resolution satellite and ground-based precipitation products over Malaysia. Remote Sensing, 7, 1504–1528.
Tao, W. K., C. S. Chen, Y. Jia, and S. Lang, 2000: Two heavy precipitation events in Taiwan: Regional scale model simulations. Proc. Workshop on Numerical Simulations of Precipitation in Taiwan Area, Chung-Li, Taiwan National Central University,19–20.
Tian, Y., C. D. Peters-Lidard, R. F. Adler, T. Kubota, and T. Ushio, 2010: Evaluation of GSMaP Precipitation Estimates over the Contiguous United States. Journal of Hydrometeorology, 11, 566–574.
Ushio, T., and Coauthors, 2009: A Kalman filter approach to the Global Satellite Mapping of Precipitation (GSMaP) from combined passive microwave and infrared radiometric data. Journal of the Meteorological Society of Japan, 87A, 137–151.
Wang, S. Y., and T. C. Chen, 2008: Measuring East Asian summer monsoon rainfall contributions by different weather systems over Taiwan. Journal of Applied Meteorology and Climatology, 47, 2068–2080.
Yeh, H. C., and Y. L. Chen, 1998: Characteristics of rainfall distributions over Taiwan during the Taiwan Area Mesoscale Experiment (TAMEX). Journal of Applied Meteorology, 37, 1457–1469.